organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-[4,5-Bis(benzyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]-4,5-di­aza­fluorene

aDepartment of Chemistry, College of Science, Yanbian University, Yanji 133002, People's Republic of China, and bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Teachers' College, Huaian 223300, People's Republic of China
*Correspondence e-mail: yulanzhu2008@126.com,

(Received 29 March 2008; accepted 20 June 2008; online 28 June 2008)

In rhe title compound, C28H20N2S4, the 1,3-dithiol-2-yl­idene and 4,5-diaza­fluoren-9-one (dafone) groups are almost coplanar, making a dihedral angle of only 5.65 (4)°. The two benzyl groups are on different sides of the 1,3-dithiol-2-yl­idene ring, forming a dihedral angle of 35.54 (2)°.

Related literature

For general synthesis, see: Sako et al. (1996[Sako, K., Kusakabe, M. & Tatemitsu, H. (1996). Mol. Cryst. Liq. Cryst. 285, 4804-4809.]); Wong et al. (2005[Wong, K. T., Chen, R. T., Fang, F. C., Wu, C. C. & Lin, Y. T. (2005). Org. Lett. 7, 1979-1982.]); Amriou et al. (2006[Amriou, S., Wang, C. S., Batsanov, A. S., Bryce, M. R., Perepichka, D. F., Orti, E., Viruela, R., Gancedo, J. V. & Rovira, C. (2006). Chem. Eur. J. 12, 3389-3400.]); Baudron & Hosseini (2006[Baudron, S. A. & Hosseini, M. W. (2006). Inorg. Chem. 45, 5260-5262.]). For the crystal structures of related compounds, see: Rillema et al. (2007[Rillema, D. P., Kirgan, R. & Moore, C. (2007). Acta Cryst. E63, o3740.]); Zhang et al. (2003[Zhang, R. L., Zhao, J. S., Shi, Q. Z. & Ng, S. W. (2003). Acta Cryst. E59, m476-m477.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N2S4

  • Mr = 512.70

  • Monoclinic, P 21 /c

  • a = 16.5133 (4) Å

  • b = 11.4036 (3) Å

  • c = 13.1406 (3) Å

  • β = 100.460 (1)°

  • V = 2435.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 (2) K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.95

  • 22070 measured reflections

  • 4701 independent reflections

  • 3365 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.137

  • S = 1.00

  • 4701 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The two coordinating nitrogen atoms in dafone have a larger bite distance (2.99 Å) compared to phenanthroline (2.65 Å). The larger N—N bite distance enforced by the rigid five-membered central ring leads to unequal binding by the two nitrogen atoms with small metal ions (Zhang et al., 2003;). The title compound was synthesized illustrating the coordination mode of dafone.

The molecular structure of the title compound was determined by X-ray analysis (Fig. 1). The 1,3-dithiol-2-ylidene and dafone groups in the structure exhibits a near planar geometry with a dihedral angle 5.65°, and can be explained by the steric repulsion between the S of the dithiole and the peri H of dafone. In the experimentally determined structure, the distances between S1—H19 and S2—H13 are 2.578 and 2.597 Å respectively, although this is still less than the sum of the van der Waals radii (2.91 Å). The two benzyl group are located on different sides of the 1,3-dithiol-2-ylidene plane exhibiting a dihedral angle of 35.5° between them. The exocyclic C11=C12 bond is sightly longer [1.364 Å] than the standard olefinic (R2C=CR2) bond length of 1.33 Å and is typical for 1,3-dithiol-2-ylidene groups [average 1.36 Å].

Fig.2 shows the packing in the unit cell and two types of π-π interactions of the benzyl groups: offset face-to-face and edge-to-face. The distance Cg···Cg between the centroids of the two adjacent benzyl groups is 6.445 Å for offset face-to-face, 4.882 and 5.118 Å for edge-to-face.

Related literature top

For general synthesis, see: Sako et al. (1996); Wong et al. (2005); Amriou et al. (2006); Baudron & Hosseini (2006). For the crystal structures of related compounds, see: Rillema et al. (2007); Zhang et al. (2003).

Experimental top

Dafone was synthesized by the oxidation of 1,10-phenanthroline with alkaline potassium permanganate in 40.6% yields according to the procedure reported in literature (Wong et al., 2005;). The cross coupling reaction of dafone with the corresponding 4,5-bis(benzylthio)-1,3-dithione- 2-thione in the presence of triethyl phosphite under a nitrogen atmosphere afforded the title compound along with the mixture of the selfcoupling product of 4,5-bis(benzylthio)-1,3-dithione-2-thione.

Crystals suitable for single-crystal X-ray diffraction were grown by recrystallisation from ethanol. 1H-NMR(CDCl3, 400 MHz) δ/nm: 8.689–8.700(d, 2H); 7.936–7.955(d, 2H), 7.310–7.407(m, 8H).

Refinement top

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. All the H atoms were positioned geometrically, and was allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms attached to carbon atoms are omitted for clarity. Symmetry codes: (i) x, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) -x, -y, -z. (iv) x, -y - 1/2, z - 1/2;
[Figure 2] Fig. 2. Packing diagram of the title compound. H atoms are omitted for clarity.
9-[4,5-Bis(benzylsulfanyl)-1,3-dithiol-2-ylidene]-4,5-diazafluorene top
Crystal data top
C28H20N2S4F(000) = 1064
Mr = 512.70Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3616 reflections
a = 16.5133 (4) Åθ = 1.3–28.1°
b = 11.4036 (3) ŵ = 0.41 mm1
c = 13.1406 (3) ÅT = 296 K
β = 100.246 (1)°Prism, yellow
V = 2435.06 (10) Å30.30 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4701 independent reflections
Radiation source: fine-focus sealed tube3365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.192 pixels mm-1θmax = 26.0°, θmin = 1.3°
Thin–slice ω scansh = 2016
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1114
Tmin = 0.93, Tmax = 0.95l = 1614
22070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.088P)2 + 0.1086P]
where P = (Fo2 + 2Fc2)/3
4701 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H20N2S4V = 2435.06 (10) Å3
Mr = 512.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5133 (4) ŵ = 0.41 mm1
b = 11.4036 (3) ÅT = 296 K
c = 13.1406 (3) Å0.30 × 0.15 × 0.15 mm
β = 100.246 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3365 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.95Rint = 0.028
22070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
4701 reflectionsΔρmin = 0.26 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26661 (13)0.3957 (2)0.12381 (18)0.0443 (6)
C20.11648 (12)0.37608 (19)0.01975 (16)0.0388 (5)
C30.22308 (13)0.3509 (2)0.19150 (18)0.0437 (6)
C40.40701 (15)0.3175 (3)0.0638 (2)0.0651 (8)
H4A0.37990.24310.07020.078*
H4B0.39300.34320.00750.078*
C50.49893 (14)0.3027 (2)0.0933 (2)0.0513 (6)
C60.55077 (16)0.3460 (2)0.0315 (2)0.0580 (7)
H60.52920.38580.02900.070*
C70.63543 (16)0.3306 (2)0.0590 (2)0.0651 (8)
H70.67020.35990.01670.078*
C80.66740 (16)0.2728 (3)0.1474 (2)0.0660 (8)
H80.72400.26280.16570.079*
C90.61659 (17)0.2296 (2)0.2091 (2)0.0652 (8)
H90.63870.18970.26940.078*
C100.53260 (16)0.2442 (2)0.1833 (2)0.0595 (7)
H100.49850.21480.22630.071*
C110.04782 (12)0.37793 (19)0.05529 (17)0.0389 (5)
C120.03983 (14)0.42998 (19)0.15886 (17)0.0415 (5)
C130.09229 (15)0.4942 (2)0.20960 (19)0.0532 (6)
H130.14630.50950.17820.064*
C140.06161 (17)0.5345 (2)0.3080 (2)0.0619 (7)
H140.09520.57700.34440.074*
C150.01918 (17)0.5114 (2)0.35224 (19)0.0592 (7)
H150.03830.54020.41840.071*
C160.04129 (13)0.41232 (19)0.21187 (17)0.0420 (5)
C170.08682 (13)0.34911 (19)0.14401 (17)0.0426 (6)
C180.03350 (12)0.32953 (19)0.04860 (17)0.0389 (5)
C190.06498 (13)0.2702 (2)0.02749 (18)0.0454 (6)
H190.03270.25520.09170.054*
C200.14634 (14)0.2337 (2)0.0048 (2)0.0522 (6)
H200.16960.19380.05430.063*
C210.19258 (14)0.2566 (2)0.0910 (2)0.0554 (7)
H210.24670.22990.10410.067*
C220.27286 (17)0.4698 (2)0.37016 (19)0.0585 (7)
H22A0.31220.51040.33610.070*
H22B0.22070.51090.35410.070*
C230.30247 (15)0.4705 (2)0.48452 (19)0.0487 (6)
C240.38114 (16)0.5099 (2)0.5233 (2)0.0605 (7)
H240.41520.53290.47770.073*
C250.4097 (2)0.5156 (3)0.6274 (3)0.0802 (9)
H250.46260.54310.65180.096*
C260.3614 (3)0.4814 (3)0.6953 (3)0.0880 (11)
H260.38130.48450.76610.106*
C270.2830 (3)0.4420 (3)0.6591 (3)0.0821 (10)
H270.24970.41930.70570.099*
C280.25280 (17)0.4359 (2)0.5533 (2)0.0623 (7)
H280.19970.40870.52920.075*
N10.16515 (11)0.31450 (18)0.16673 (16)0.0504 (5)
N20.07133 (12)0.45076 (19)0.30653 (15)0.0525 (5)
S10.11858 (3)0.32501 (5)0.14525 (4)0.0451 (2)
S20.21191 (3)0.42865 (6)0.00076 (5)0.0470 (2)
S30.25999 (4)0.31922 (6)0.32190 (5)0.0541 (2)
S40.37216 (4)0.42555 (6)0.14861 (5)0.0535 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (12)0.0470 (14)0.0480 (14)0.0001 (10)0.0005 (11)0.0063 (11)
C20.0353 (11)0.0382 (13)0.0419 (13)0.0015 (10)0.0045 (10)0.0024 (10)
C30.0407 (12)0.0413 (13)0.0454 (14)0.0020 (10)0.0022 (11)0.0010 (10)
C40.0392 (13)0.084 (2)0.0697 (18)0.0049 (13)0.0033 (12)0.0222 (15)
C50.0391 (12)0.0519 (15)0.0618 (17)0.0012 (11)0.0058 (12)0.0124 (13)
C60.0521 (15)0.0583 (17)0.0635 (18)0.0064 (12)0.0102 (13)0.0009 (13)
C70.0462 (15)0.0671 (19)0.085 (2)0.0009 (13)0.0201 (15)0.0047 (16)
C80.0417 (14)0.0595 (18)0.093 (2)0.0095 (13)0.0005 (15)0.0164 (16)
C90.0637 (18)0.0517 (17)0.0730 (19)0.0056 (14)0.0077 (16)0.0025 (14)
C100.0593 (17)0.0562 (17)0.0620 (18)0.0127 (13)0.0080 (14)0.0018 (13)
C110.0344 (11)0.0399 (13)0.0415 (13)0.0008 (10)0.0045 (10)0.0010 (10)
C120.0409 (12)0.0427 (13)0.0399 (13)0.0018 (10)0.0043 (10)0.0025 (10)
C130.0505 (14)0.0589 (17)0.0499 (15)0.0058 (12)0.0081 (12)0.0065 (12)
C140.0694 (18)0.0680 (18)0.0508 (16)0.0089 (14)0.0175 (14)0.0094 (14)
C150.0690 (17)0.0673 (18)0.0394 (15)0.0036 (14)0.0048 (13)0.0064 (13)
C160.0389 (12)0.0458 (14)0.0393 (13)0.0022 (10)0.0019 (10)0.0053 (11)
C170.0379 (12)0.0436 (14)0.0437 (14)0.0043 (10)0.0007 (10)0.0051 (11)
C180.0330 (11)0.0402 (13)0.0427 (13)0.0019 (9)0.0043 (10)0.0050 (10)
C190.0391 (13)0.0488 (14)0.0479 (14)0.0030 (10)0.0070 (11)0.0007 (11)
C200.0398 (13)0.0568 (16)0.0609 (17)0.0034 (11)0.0114 (12)0.0008 (13)
C210.0341 (13)0.0568 (16)0.0738 (19)0.0031 (11)0.0055 (13)0.0037 (14)
C220.0678 (17)0.0483 (15)0.0526 (16)0.0021 (13)0.0080 (13)0.0018 (12)
C230.0520 (14)0.0426 (14)0.0479 (15)0.0089 (11)0.0010 (12)0.0001 (11)
C240.0580 (16)0.0592 (17)0.0609 (18)0.0002 (13)0.0014 (14)0.0011 (13)
C250.085 (2)0.069 (2)0.072 (2)0.0017 (17)0.0248 (18)0.0088 (17)
C260.135 (3)0.068 (2)0.051 (2)0.028 (2)0.011 (2)0.0131 (16)
C270.129 (3)0.064 (2)0.061 (2)0.030 (2)0.041 (2)0.0126 (16)
C280.0613 (17)0.0548 (17)0.072 (2)0.0086 (13)0.0143 (15)0.0028 (14)
N10.0345 (10)0.0572 (13)0.0560 (13)0.0001 (9)0.0013 (9)0.0045 (10)
N20.0558 (13)0.0602 (14)0.0388 (12)0.0043 (10)0.0011 (10)0.0009 (10)
S10.0392 (3)0.0531 (4)0.0412 (4)0.0035 (3)0.0020 (3)0.0036 (3)
S20.0357 (3)0.0598 (4)0.0443 (4)0.0074 (3)0.0040 (3)0.0001 (3)
S30.0621 (4)0.0465 (4)0.0470 (4)0.0019 (3)0.0083 (3)0.0044 (3)
S40.0353 (3)0.0593 (4)0.0626 (5)0.0048 (3)0.0006 (3)0.0127 (3)
Geometric parameters (Å, º) top
C1—C31.340 (3)C14—H140.9300
C1—S21.747 (2)C15—N21.328 (3)
C1—S41.749 (2)C15—H150.9300
C2—C111.364 (3)C16—N21.329 (3)
C2—S11.744 (2)C16—C171.455 (3)
C2—S21.745 (2)C17—N11.334 (3)
C3—S11.750 (2)C17—C181.416 (3)
C3—S31.751 (2)C18—C191.383 (3)
C4—C51.508 (3)C19—C201.387 (3)
C4—S41.822 (3)C19—H190.9300
C4—H4A0.9700C20—C211.377 (3)
C4—H4B0.9700C20—H200.9300
C5—C61.372 (3)C21—N11.338 (3)
C5—C101.385 (3)C21—H210.9300
C6—C71.391 (3)C22—C231.495 (3)
C6—H60.9300C22—S31.829 (2)
C7—C81.358 (4)C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
C8—C91.359 (4)C23—C281.382 (3)
C8—H80.9300C23—C241.383 (3)
C9—C101.378 (4)C24—C251.367 (4)
C9—H90.9300C24—H240.9300
C10—H100.9300C25—C261.356 (5)
C11—C181.469 (3)C25—H250.9300
C11—C121.469 (3)C26—C271.374 (5)
C12—C131.392 (3)C26—H260.9300
C12—C161.410 (3)C27—C281.392 (4)
C13—C141.381 (3)C27—H270.9300
C13—H130.9300C28—H280.9300
C14—C151.382 (4)
C3—C1—S2116.50 (17)N2—C16—C12125.4 (2)
C3—C1—S4125.80 (19)N2—C16—C17126.1 (2)
S2—C1—S4117.69 (14)C12—C16—C17108.48 (19)
C11—C2—S1124.27 (16)N1—C17—C18125.2 (2)
C11—C2—S2123.16 (17)N1—C17—C16126.5 (2)
S1—C2—S2112.55 (12)C18—C17—C16108.24 (19)
C1—C3—S1116.50 (18)C19—C18—C17117.57 (19)
C1—C3—S3126.42 (18)C19—C18—C11133.8 (2)
S1—C3—S3117.07 (14)C17—C18—C11108.60 (19)
C5—C4—S4109.37 (17)C18—C19—C20117.8 (2)
C5—C4—H4A109.8C18—C19—H19121.1
S4—C4—H4A109.8C20—C19—H19121.1
C5—C4—H4B109.8C21—C20—C19119.9 (2)
S4—C4—H4B109.8C21—C20—H20120.1
H4A—C4—H4B108.2C19—C20—H20120.1
C6—C5—C10118.7 (2)N1—C21—C20124.6 (2)
C6—C5—C4120.9 (2)N1—C21—H21117.7
C10—C5—C4120.4 (2)C20—C21—H21117.7
C5—C6—C7120.3 (3)C23—C22—S3110.54 (17)
C5—C6—H6119.9C23—C22—H22A109.5
C7—C6—H6119.9S3—C22—H22A109.5
C8—C7—C6120.2 (3)C23—C22—H22B109.5
C8—C7—H7119.9S3—C22—H22B109.5
C6—C7—H7119.9H22A—C22—H22B108.1
C7—C8—C9119.9 (3)C28—C23—C24118.7 (2)
C7—C8—H8120.0C28—C23—C22122.0 (2)
C9—C8—H8120.0C24—C23—C22119.3 (2)
C8—C9—C10120.7 (3)C25—C24—C23121.2 (3)
C8—C9—H9119.7C25—C24—H24119.4
C10—C9—H9119.7C23—C24—H24119.4
C9—C10—C5120.2 (3)C26—C25—C24120.4 (3)
C9—C10—H10119.9C26—C25—H25119.8
C5—C10—H10119.9C24—C25—H25119.8
C2—C11—C18127.0 (2)C25—C26—C27119.6 (3)
C2—C11—C12127.01 (19)C25—C26—H26120.2
C18—C11—C12105.95 (18)C27—C26—H26120.2
C13—C12—C16117.1 (2)C26—C27—C28120.7 (3)
C13—C12—C11134.1 (2)C26—C27—H27119.6
C16—C12—C11108.7 (2)C28—C27—H27119.6
C14—C13—C12117.9 (2)C23—C28—C27119.3 (3)
C14—C13—H13121.1C23—C28—H28120.3
C12—C13—H13121.1C27—C28—H28120.3
C13—C14—C15119.7 (2)C17—N1—C21115.0 (2)
C13—C14—H14120.1C15—N2—C16115.5 (2)
C15—C14—H14120.1C2—S1—C397.15 (10)
N2—C15—C14124.3 (2)C2—S2—C197.19 (11)
N2—C15—H15117.8C3—S3—C2298.28 (11)
C14—C15—H15117.8C1—S4—C499.62 (11)

Experimental details

Crystal data
Chemical formulaC28H20N2S4
Mr512.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.5133 (4), 11.4036 (3), 13.1406 (3)
β (°) 100.246 (1)
V3)2435.06 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.93, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
22070, 4701, 3365
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.137, 1.01
No. of reflections4701
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Acknowledgements

This work was supported by the Major State Basic Research Development Programme and the National Natural Science Foundation of China (grant Nos. 20571029 and 20671038).

References

First citationAmriou, S., Wang, C. S., Batsanov, A. S., Bryce, M. R., Perepichka, D. F., Orti, E., Viruela, R., Gancedo, J. V. & Rovira, C. (2006). Chem. Eur. J. 12, 3389–3400.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaudron, S. A. & Hosseini, M. W. (2006). Inorg. Chem. 45, 5260–5262.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRillema, D. P., Kirgan, R. & Moore, C. (2007). Acta Cryst. E63, o3740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSako, K., Kusakabe, M. & Tatemitsu, H. (1996). Mol. Cryst. Liq. Cryst. 285, 4804–4809.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. T., Chen, R. T., Fang, F. C., Wu, C. C. & Lin, Y. T. (2005). Org. Lett. 7, 1979–1982.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, R. L., Zhao, J. S., Shi, Q. Z. & Ng, S. W. (2003). Acta Cryst. E59, m476–m477.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds