organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Quinolylguanidinium chloride

aDepartment of Chemistry of Huaiyin Teachers College, Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaian 223300, People's Republic of China
*Correspondence e-mail: weichangmei@sina.com

(Received 20 April 2008; accepted 7 May 2008; online 7 June 2008)

The title compound, C10H11N4+·Cl, has been synthesized by the reaction of 8-amino­quinoline and cyanamide. The dihedral angle between the plane of the guanidine group and the quinoline ring system is 68.64 (13)°. The crystal structure is stabilized by inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Hughes & Liu (1976[Hughes, J. L. & Liu, R. C. H. (1976). US Patent No. 4 000 279.]); Juyal & Anand (2003[Juyal, P. & Anand, O. N. (2003). Fuel, 82, 97-103.]); Knhla et al. (1986[Knhla, D. E., Studt, W. L., Campbell, H. F. & Yelnosky, J. (1986). US Patent No. 4 563 460.]); Orner & Hamilton (2001[Orner, B. P. & Hamilton, A. D. (2001). J. Inclusion Phenom. Macrocycl. Chem. 41, 141-147.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N4+·Cl

  • Mr = 222.68

  • Orthorhombic, P 21 21 21

  • a = 8.7410 (17) Å

  • b = 9.0230 (18) Å

  • c = 13.942 (3) Å

  • V = 1099.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.939, Tmax = 0.969

  • 3398 measured reflections

  • 2398 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.0301

  • 3 standard reflections every 97 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.108

  • S = 0.99

  • 2398 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 500 Friedel pairs

  • Flack parameter: 0.02 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.34 3.171 (3) 162
N2—H2A⋯Cl1i 0.86 2.65 3.401 (3) 146
N2—H2B⋯Cl1ii 0.86 2.64 3.405 (3) 149
N3—H3A⋯Cl1ii 0.86 2.39 3.198 (3) 158
N3—H3B⋯Cl1 0.86 2.46 3.269 (3) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: XSCANS (Bruker, 2000[Bruker, (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Guanidine is used in variety of supramolecular recognition processes across the spectrum of organic, biological and medicinal chemistry (Orner & Hamilton, 2001). Guanidine compounds containing a quinolyl ring are used as decongestive agents (Hughes & Liu, 1976) and in the treatment of gastrointestinal motility disorders (Knhla et al., 1986). Guanidine derivatives are also employed as inhibitors of the reactions responsible for sedimentation in fuels as they efficiently disperse the gum and sediments formed (Juyal & Anand, 2003). These important compounds are therefore of interest from a structural viewpoint. In this paper, we report the crystal structure of the title compound, (I), which, to our knowledge, represents the first structure containing the 8-quinolylguanidium cation. A perspective view of (I) is shown in Fig.1. In (I), bond lengths and angles within the 8-quinolylguanidium cation (Table 1) indicate a partial conjugation between the guanidine group and the quinoline ring. The dihedral angle formed by the plane of the guanidine group and the quinoline ring is 68.64 (13)°. In the crystal packing, The chloride anion interacts with the cations though N—H···Cl hydrogen bonds forming a three dimensions network (Fig. 2, Table 2).

Related literature top

For related literature, see: Hughes & Liu (1976); Juyal & Anand (2003); Knhla et al. (1986); Orner & Hamilton (2001).

Experimental top

The title compound was synthesized as following. A mixture of 8-aminoquinoline (68.06 mmol), cyanamide (83.3 mmol) and ethanol (50 ml) was heated under reflux for 3 h with stirring. The reaction mixture was evaporated to give a residue. Singles crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous solution.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å, N—H = 0.86 Å, and refined as riding with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: XSCANS (Bruker, 2000); cell refinement: XSCANS (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram in the crystal for (I).
'8-quinolylguanidine monohydrochloride' top
Crystal data top
C10H11N4+·ClDx = 1.345 Mg m3
Mr = 222.68Melting point = 533–534 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.7410 (17) ÅCell parameters from 25 reflections
b = 9.0230 (18) Åθ = 2.1–25.6°
c = 13.942 (3) ŵ = 0.32 mm1
V = 1099.6 (4) Å3T = 293 K
Z = 4Block, yellow
F(000) = 4640.20 × 0.20 × 0.20 mm
Data collection top
Siemens P4
diffractometer
2340 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.0°, θmin = 2.7°
2θ/ω scansh = 1111
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
k = 1111
Tmin = 0.939, Tmax = 0.969l = 1717
3398 measured reflections3 standard reflections every 97 reflections
2398 independent reflections intensity decay: 2.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.585P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2398 reflectionsΔρmax = 0.18 e Å3
136 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 500 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (10)
Crystal data top
C10H11N4+·ClV = 1099.6 (4) Å3
Mr = 222.68Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7410 (17) ŵ = 0.32 mm1
b = 9.0230 (18) ÅT = 293 K
c = 13.942 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Siemens P4
diffractometer
2340 reflections with I > 2σ(I)
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Rint = 0.030
Tmin = 0.939, Tmax = 0.9693 standard reflections every 97 reflections
3398 measured reflections intensity decay: 2.1%
2398 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.18 e Å3
S = 0.99Δρmin = 0.28 e Å3
2398 reflectionsAbsolute structure: Flack (1983), 500 Friedel pairs
136 parametersAbsolute structure parameter: 0.02 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87040 (9)0.86783 (8)0.66733 (5)0.04274 (19)
N10.7592 (3)0.9935 (3)0.97479 (18)0.0385 (5)
H1A0.72041.00961.03050.046*
N20.8958 (3)1.1997 (3)0.99486 (19)0.0470 (6)
H2A0.85691.20791.05130.056*
H2B0.96001.26460.97450.056*
N30.9244 (3)1.0767 (3)0.85594 (17)0.0424 (6)
H3A0.99181.13970.83710.051*
H3B0.89951.00370.81950.051*
N40.4631 (3)0.9657 (3)0.90750 (19)0.0424 (6)
C10.7557 (4)0.6150 (4)0.8683 (2)0.0451 (7)
H10.82350.53700.85860.054*
C20.6087 (3)0.6031 (3)0.8407 (2)0.0435 (7)
H20.57410.51450.81440.052*
C30.5062 (4)0.7226 (3)0.8511 (2)0.0437 (7)
C40.3507 (4)0.7159 (3)0.8217 (2)0.0455 (7)
H4A0.31180.63100.79290.055*
C50.2599 (4)0.8362 (3)0.8366 (2)0.0479 (7)
H50.15830.83510.81690.057*
C60.3210 (4)0.9621 (4)0.8819 (2)0.0463 (7)
H60.25851.04360.89360.056*
C70.5564 (4)0.8547 (4)0.8952 (2)0.0426 (7)
C80.7119 (3)0.8643 (4)0.92611 (19)0.0398 (6)
C90.8061 (4)0.7491 (3)0.9126 (2)0.0434 (7)
H90.90720.75660.93270.052*
C100.8584 (3)1.0921 (3)0.9418 (2)0.0392 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0583 (4)0.0381 (3)0.0318 (3)0.0130 (3)0.0029 (3)0.0014 (3)
N10.0418 (13)0.0343 (12)0.0395 (12)0.0066 (10)0.0012 (10)0.0012 (10)
N20.0490 (15)0.0475 (15)0.0445 (14)0.0093 (13)0.0009 (12)0.0055 (12)
N30.0438 (14)0.0413 (13)0.0420 (14)0.0112 (11)0.0029 (10)0.0047 (10)
N40.0424 (14)0.0408 (14)0.0440 (14)0.0057 (11)0.0028 (11)0.0004 (11)
C10.0506 (17)0.0380 (17)0.0468 (15)0.0019 (15)0.0020 (13)0.0019 (13)
C20.0483 (17)0.0376 (15)0.0446 (15)0.0059 (12)0.0004 (14)0.0005 (13)
C30.0496 (17)0.0398 (16)0.0418 (17)0.0083 (13)0.0030 (13)0.0009 (13)
C40.0478 (17)0.0423 (15)0.0464 (16)0.0071 (13)0.0045 (15)0.0004 (13)
C50.0498 (17)0.0454 (17)0.0485 (16)0.0079 (14)0.0006 (16)0.0026 (15)
C60.0493 (17)0.0444 (17)0.0452 (17)0.0024 (14)0.0000 (14)0.0008 (13)
C70.0456 (16)0.0396 (16)0.0426 (15)0.0060 (14)0.0010 (12)0.0002 (14)
C80.0455 (15)0.0357 (14)0.0382 (14)0.0090 (14)0.0028 (12)0.0011 (13)
C90.0460 (16)0.0379 (15)0.0462 (16)0.0013 (14)0.0020 (13)0.0006 (13)
C100.0387 (15)0.0367 (14)0.0423 (14)0.0079 (12)0.0001 (13)0.0009 (11)
Geometric parameters (Å, º) top
N1—C101.324 (4)C1—H10.9300
N1—C81.411 (4)C2—C31.410 (4)
N1—H1A0.8600C2—H20.9300
N2—C101.263 (4)C3—C71.411 (4)
N2—H2A0.8600C3—C41.420 (4)
N2—H2B0.8600C4—C51.361 (4)
N3—C101.337 (4)C4—H4A0.9300
N3—H3A0.8600C5—C61.406 (4)
N3—H3B0.8600C5—H50.9300
N4—C61.293 (4)C6—H60.9300
N4—C71.303 (4)C7—C81.429 (4)
C1—C21.345 (5)C8—C91.339 (5)
C1—C91.429 (4)C9—H90.9300
C10—N1—C8125.4 (3)C5—C4—H4A120.6
C10—N1—H1A117.3C3—C4—H4A120.6
C8—N1—H1A117.3C4—C5—C6119.5 (3)
C10—N2—H2A120.0C4—C5—H5120.3
C10—N2—H2B120.0C6—C5—H5120.3
H2A—N2—H2B120.0N4—C6—C5120.6 (3)
C10—N3—H3A120.0N4—C6—H6119.7
C10—N3—H3B120.0C5—C6—H6119.7
H3A—N3—H3B120.0N4—C7—C3120.8 (3)
C6—N4—C7123.1 (3)N4—C7—C8120.6 (3)
C2—C1—C9119.0 (3)C3—C7—C8118.6 (3)
C2—C1—H1120.5C9—C8—N1121.9 (3)
C9—C1—H1120.5C9—C8—C7119.7 (3)
C1—C2—C3121.1 (3)N1—C8—C7118.3 (3)
C1—C2—H2119.4C8—C9—C1122.0 (3)
C3—C2—H2119.4C8—C9—H9119.0
C2—C3—C7119.5 (3)C1—C9—H9119.0
C2—C3—C4123.1 (3)N2—C10—N1118.8 (3)
C7—C3—C4117.3 (3)N2—C10—N3119.5 (3)
C5—C4—C3118.7 (3)N1—C10—N3121.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.343.171 (3)162
N2—H2A···Cl1i0.862.653.401 (3)146
N2—H2B···Cl1ii0.862.643.405 (3)149
N3—H3A···Cl1ii0.862.393.198 (3)158
N3—H3B···Cl10.862.463.269 (3)156
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H11N4+·Cl
Mr222.68
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.7410 (17), 9.0230 (18), 13.942 (3)
V3)1099.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.939, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3398, 2398, 2340
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.108, 0.99
No. of reflections2398
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28
Absolute structureFlack (1983), 500 Friedel pairs
Absolute structure parameter0.02 (10)

Computer programs: XSCANS (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—C101.324 (4)C2—C31.410 (4)
N1—C81.411 (4)C3—C71.411 (4)
N2—C101.263 (4)C3—C41.420 (4)
N3—C101.337 (4)C4—C51.361 (4)
N4—C61.293 (4)C5—C61.406 (4)
N4—C71.303 (4)C7—C81.429 (4)
C1—C21.345 (5)C8—C91.339 (5)
C1—C91.429 (4)
C10—N1—C8125.4 (3)N4—C7—C3120.8 (3)
C6—N4—C7123.1 (3)N4—C7—C8120.6 (3)
C2—C1—C9119.0 (3)C3—C7—C8118.6 (3)
C1—C2—C3121.1 (3)C9—C8—N1121.9 (3)
C2—C3—C7119.5 (3)C9—C8—C7119.7 (3)
C2—C3—C4123.1 (3)N1—C8—C7118.3 (3)
C7—C3—C4117.3 (3)C8—C9—C1122.0 (3)
C5—C4—C3118.7 (3)N2—C10—N1118.8 (3)
C4—C5—C6119.5 (3)N2—C10—N3119.5 (3)
N4—C6—C5120.6 (3)N1—C10—N3121.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.343.171 (3)161.5
N2—H2A···Cl1i0.862.653.401 (3)146.3
N2—H2B···Cl1ii0.862.643.405 (3)148.6
N3—H3A···Cl1ii0.862.393.198 (3)157.6
N3—H3B···Cl10.862.463.269 (3)156.4
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The author is grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers College (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.

References

First citationBruker, (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHughes, J. L. & Liu, R. C. H. (1976). US Patent No. 4 000 279.  Google Scholar
First citationJuyal, P. & Anand, O. N. (2003). Fuel, 82, 97–103.  Web of Science CrossRef Google Scholar
First citationKnhla, D. E., Studt, W. L., Campbell, H. F. & Yelnosky, J. (1986). US Patent No. 4 563 460.  Google Scholar
First citationOrner, B. P. & Hamilton, A. D. (2001). J. Inclusion Phenom. Macrocycl. Chem. 41, 141–147.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds