organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Cyano­phen­yl)-3-(2-furo­yl)thio­urea

aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and cDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba
*Correspondence e-mail: duque@imre.oc.uh.cu

(Received 16 May 2008; accepted 27 May 2008; online 7 June 2008)

The title compound, C13H9N3O2S, was synthesized from furoyl isothio­cyanate and 3-amino­benzonitrile in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)° with the ketofuran group and the benzene ring, respectively. The mol­ecular geometry is stabilized by N—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by two inter­molecular N—H⋯S hydrogen bonds to form dimers.

Related literature

For general background, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]). For related structures, see: Dago et al. (1987[Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martín, A. & Macías, A. (1987). Kristallografiya, 32, 1024-1026.]); Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695.]); Duque et al. (2008[Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O2S

  • Mr = 271.29

  • Monoclinic, P 21 /n

  • a = 16.7375 (5) Å

  • b = 3.8789 (1) Å

  • c = 19.6739 (5) Å

  • β = 96.956 (1)°

  • V = 1267.89 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.16 × 0.04 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4807 measured reflections

  • 2684 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.208

  • S = 1.08

  • 2684 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.28 2.701 (5) 110
N1—H1⋯S1i 0.86 2.80 3.629 (4) 163
N2—H2⋯O1 0.86 1.90 2.622 (4) 141
Symmetry code: (i) -x, -y+1, -z.

Data collection: COLLECT (Enraf–Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). Structural determinations of this kind of derivatives shed more light on the chemistry of aroylthiourea compounds and their wide variety of applications. The title compound (Fig. 1) is another example of our newly synthesized furoylthiourea derivatives.

The title compound crystallizes in the thioamide form. The bond lengths are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1 (1.347 (5) Å), C2—N2 (1.348 (5) Å) and C1—N1 (1.368 (5) Å) bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group is nearly coplanar with the plane of the thiourea fragment (dihedral angle 3.39(16°), whereas the benzene ring is inclined by 37.83 (12)°. The geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig. 1 and Table 2). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig. 2 and Table 2) between centrosymmetrically related molecules forming dimers stacked along the [010] direction.

Related literature top

For general background, see: Aly et al. (2007); Koch (2001). For related structures, see: Dago et al. (1987); Otazo-Sánchez et al. (2001); Pérez et al. (2008); Duque et al. (2008). For synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 3-aminobenzonitrile. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 148–149 °C). Elemental analysis (%) for C13H9N3O2S calculated: C 57.56, H 3.32, N 15.50, S 11.81; found: C 57.77, H 3.34, N 15.79, S 11.73.

Refinement top

H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å or 0.98 Å (methylene), and refined in riding-model, with Uiso(H) = 1.5Ueq(C) for methylene or 1.2Ueq(C,N) for others.

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecule (50% probability displacement ellipsoids) Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-(3-Cyanophenyl)-3-(2-furoyl)thiourea top
Crystal data top
C13H9N3O2SF(000) = 560
Mr = 271.29Dx = 1.421 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3051 reflections
a = 16.7375 (5) Åθ = 2.9–26.7°
b = 3.8789 (1) ŵ = 0.26 mm1
c = 19.6739 (5) ÅT = 294 K
β = 96.956 (1)°Prism, colourless
V = 1267.89 (6) Å30.16 × 0.04 × 0.03 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.040
CCD rotation images, thick slices scansθmax = 26.9°, θmin = 3.9°
4807 measured reflectionsh = 2021
2684 independent reflectionsk = 44
1908 reflections with I > 2σ(I)l = 2524
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.0641P)2 + 3.4802P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.208(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.51 e Å3
2684 reflectionsΔρmin = 0.34 e Å3
172 parameters
Crystal data top
C13H9N3O2SV = 1267.89 (6) Å3
Mr = 271.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.7375 (5) ŵ = 0.26 mm1
b = 3.8789 (1) ÅT = 294 K
c = 19.6739 (5) Å0.16 × 0.04 × 0.03 mm
β = 96.956 (1)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1908 reflections with I > 2σ(I)
4807 measured reflectionsRint = 0.040
2684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.08Δρmax = 0.51 e Å3
2684 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10993 (6)0.7197 (3)0.00840 (5)0.0465 (3)
O10.08926 (19)0.9883 (11)0.21366 (15)0.0699 (11)
C130.3735 (3)1.3099 (15)0.0369 (3)0.0617 (13)
N30.3872 (3)1.4227 (17)0.0884 (3)0.0909 (17)
N10.0452 (2)0.7949 (10)0.10538 (16)0.0457 (9)
H10.00310.71860.08050.055*
O20.10121 (19)0.6665 (10)0.14431 (15)0.0643 (10)
N20.17909 (19)0.9396 (11)0.11374 (17)0.0482 (9)
H20.17120.9910.15490.058*
C70.2586 (2)0.9846 (11)0.0976 (2)0.0415 (9)
C50.1517 (3)0.7102 (15)0.2424 (3)0.0676 (15)
H50.18720.69860.27520.081*
C20.1143 (2)0.8261 (11)0.07249 (19)0.0398 (9)
C90.3556 (2)1.1694 (12)0.0263 (2)0.0474 (10)
C80.2756 (2)1.1209 (12)0.0366 (2)0.0456 (10)
H80.23421.17980.00260.055*
C30.0430 (2)0.7960 (12)0.1925 (2)0.0471 (10)
C100.4180 (3)1.0819 (14)0.0767 (2)0.0571 (12)
H100.47141.10930.0690.068*
C10.0355 (3)0.8694 (13)0.1719 (2)0.0495 (11)
C110.3993 (3)0.9541 (15)0.1381 (3)0.0633 (14)
H110.44030.90260.17290.076*
C40.0724 (3)0.8274 (14)0.2531 (2)0.0581 (13)
H40.04520.91050.29380.07*
C60.1676 (3)0.6183 (17)0.1772 (3)0.0705 (15)
H60.21680.53350.15690.085*
C120.3204 (3)0.9022 (13)0.1483 (2)0.0535 (11)
H120.30840.81090.18950.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0410 (6)0.0603 (8)0.0382 (5)0.0046 (5)0.0050 (4)0.0056 (5)
O10.0528 (19)0.112 (3)0.0457 (17)0.021 (2)0.0093 (14)0.0222 (19)
C130.049 (3)0.074 (4)0.063 (3)0.004 (2)0.015 (2)0.004 (3)
N30.088 (4)0.115 (5)0.073 (3)0.013 (3)0.025 (3)0.017 (3)
N10.0389 (17)0.061 (2)0.0367 (17)0.0055 (17)0.0040 (14)0.0029 (17)
O20.0536 (18)0.096 (3)0.0440 (16)0.0177 (19)0.0072 (14)0.0081 (18)
N20.0393 (18)0.069 (3)0.0355 (17)0.0083 (18)0.0028 (13)0.0001 (17)
C70.039 (2)0.041 (2)0.045 (2)0.0045 (18)0.0045 (16)0.0001 (18)
C50.058 (3)0.075 (4)0.075 (3)0.001 (3)0.031 (3)0.004 (3)
C20.0358 (19)0.043 (2)0.040 (2)0.0019 (17)0.0049 (16)0.0019 (18)
C90.044 (2)0.046 (3)0.053 (2)0.0032 (19)0.0071 (18)0.003 (2)
C80.039 (2)0.052 (3)0.044 (2)0.0024 (19)0.0022 (17)0.0050 (19)
C30.042 (2)0.058 (3)0.042 (2)0.004 (2)0.0073 (17)0.003 (2)
C100.036 (2)0.071 (3)0.064 (3)0.005 (2)0.005 (2)0.002 (3)
C10.047 (2)0.060 (3)0.042 (2)0.005 (2)0.0072 (18)0.001 (2)
C110.043 (2)0.081 (4)0.062 (3)0.001 (2)0.011 (2)0.010 (3)
C40.059 (3)0.073 (4)0.045 (2)0.003 (3)0.016 (2)0.009 (2)
C60.045 (3)0.094 (4)0.073 (3)0.014 (3)0.013 (2)0.009 (3)
C120.051 (2)0.060 (3)0.047 (2)0.008 (2)0.0041 (19)0.006 (2)
Geometric parameters (Å, º) top
S1—C21.637 (4)C5—C41.395 (7)
O1—C11.233 (5)C5—H50.93
C13—N31.153 (6)C9—C81.392 (6)
C13—C91.422 (6)C9—C101.392 (6)
N1—C11.368 (5)C8—H80.93
N1—C21.397 (5)C3—C41.348 (6)
N1—H10.86C3—C11.450 (6)
O2—C61.365 (6)C10—C111.377 (7)
O2—C31.369 (5)C10—H100.93
N2—C21.348 (5)C11—C121.375 (6)
N2—C71.416 (5)C11—H110.93
N2—H20.86C4—H40.93
C7—C81.373 (6)C6—H60.93
C7—C121.383 (6)C12—H120.93
C5—C61.326 (7)
N3—C13—C9179.3 (6)C9—C8—H8120.5
C1—N1—C2128.7 (3)C4—C3—O2109.9 (4)
C1—N1—H1115.6C4—C3—C1132.0 (4)
C2—N1—H1115.6O2—C3—C1118.1 (4)
C6—O2—C3105.9 (4)C11—C10—C9118.9 (4)
C2—N2—C7128.0 (3)C11—C10—H10120.6
C2—N2—H2116C9—C10—H10120.6
C7—N2—H2116O1—C1—N1123.7 (4)
C8—C7—C12120.2 (4)O1—C1—C3120.0 (4)
C8—C7—N2122.9 (4)N1—C1—C3116.3 (4)
C12—C7—N2116.8 (4)C12—C11—C10120.3 (4)
C6—C5—C4108.0 (4)C12—C11—H11119.9
C6—C5—H5126C10—C11—H11119.9
C4—C5—H5126C3—C4—C5106.3 (4)
N2—C2—N1113.6 (3)C3—C4—H4126.9
N2—C2—S1127.3 (3)C5—C4—H4126.9
N1—C2—S1119.1 (3)C5—C6—O2110.0 (4)
C8—C9—C10121.1 (4)C5—C6—H6125
C8—C9—C13119.1 (4)O2—C6—H6125
C10—C9—C13119.8 (4)C11—C12—C7120.6 (4)
C7—C8—C9118.9 (4)C11—C12—H12119.7
C7—C8—H8120.5C7—C12—H12119.7
C2—N2—C7—C841.1 (7)C2—N1—C1—C3177.3 (4)
C2—N2—C7—C12142.4 (5)C4—C3—C1—O11.2 (9)
C7—N2—C2—N1176.9 (4)O2—C3—C1—O1179.5 (5)
C7—N2—C2—S11.9 (7)C4—C3—C1—N1177.9 (5)
C1—N1—C2—N21.3 (7)O2—C3—C1—N11.3 (7)
C1—N1—C2—S1179.8 (4)C9—C10—C11—C122.4 (8)
C12—C7—C8—C90.9 (7)O2—C3—C4—C50.5 (6)
N2—C7—C8—C9177.3 (4)C1—C3—C4—C5178.8 (5)
C10—C9—C8—C70.1 (7)C6—C5—C4—C30.7 (7)
C13—C9—C8—C7179.9 (5)C4—C5—C6—O20.7 (7)
C6—O2—C3—C40.1 (6)C3—O2—C6—C50.4 (6)
C6—O2—C3—C1179.3 (5)C10—C11—C12—C71.5 (8)
C8—C9—C10—C111.7 (8)C8—C7—C12—C110.3 (7)
C13—C9—C10—C11178.4 (5)N2—C7—C12—C11176.8 (5)
C2—N1—C1—O11.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.282.701 (5)110
N1—H1···S1i0.862.803.629 (4)163
N2—H2···O10.861.902.622 (4)141
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H9N3O2S
Mr271.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)16.7375 (5), 3.8789 (1), 19.6739 (5)
β (°) 96.956 (1)
V3)1267.89 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.16 × 0.04 × 0.03
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4807, 2684, 1908
Rint0.040
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.208, 1.08
No. of reflections2684
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.34

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C21.637 (4)N1—C11.368 (5)
O1—C11.233 (5)N1—C21.397 (5)
C13—N31.153 (6)N2—C21.348 (5)
C2—N2—C7—C841.1 (7)O2—C3—C1—O1179.5 (5)
C2—N2—C7—C12142.4 (5)O2—C3—C1—N11.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.282.701 (5)110
N1—H1···S1i0.862.803.629 (4)163
N2—H2···O10.861.902.622 (4)141
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationDago, A., Simonov, M. A., Pobedimskaya, E. A., Martín, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026.  CAS Google Scholar
First citationDuque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds