organic compounds
1-(3-Cyanophenyl)-3-(2-furoyl)thiourea
aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and cDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba
*Correspondence e-mail: duque@imre.oc.uh.cu
The title compound, C13H9N3O2S, was synthesized from furoyl isothiocyanate and 3-aminobenzonitrile in dry acetone. The thiourea group is in the thioamide form. The thiourea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)° with the ketofuran group and the benzene ring, respectively. The molecular geometry is stabilized by N—H⋯O hydrogen bonds. In the centrosymmetrically related molecules are linked by two intermolecular N—H⋯S hydrogen bonds to form dimers.
Related literature
For general background, see: Aly et al. (2007); Koch (2001). For related structures, see: Dago et al. (1987); Otazo-Sánchez et al. (2001); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Enraf–Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808016012/rz2219sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016012/rz2219Isup2.hkl
The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 3-aminobenzonitrile. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 148–149 °C). Elemental analysis (%) for C13H9N3O2S calculated: C 57.56, H 3.32, N 15.50, S 11.81; found: C 57.77, H 3.34, N 15.79, S 11.73.
H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.95 Å or 0.98 Å (methylene), and refined in riding-model, with Uiso(H) = 1.5Ueq(C) for methylene or 1.2Ueq(C,N) for others.
Data collection: COLLECT (Enraf–Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H9N3O2S | F(000) = 560 |
Mr = 271.29 | Dx = 1.421 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3051 reflections |
a = 16.7375 (5) Å | θ = 2.9–26.7° |
b = 3.8789 (1) Å | µ = 0.26 mm−1 |
c = 19.6739 (5) Å | T = 294 K |
β = 96.956 (1)° | Prism, colourless |
V = 1267.89 (6) Å3 | 0.16 × 0.04 × 0.03 mm |
Z = 4 |
Enraf–Nonius KappaCCD diffractometer | Rint = 0.040 |
CCD rotation images, thick slices scans | θmax = 26.9°, θmin = 3.9° |
4807 measured reflections | h = −20→21 |
2684 independent reflections | k = −4→4 |
1908 reflections with I > 2σ(I) | l = −25→24 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.0641P)2 + 3.4802P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.208 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.51 e Å−3 |
2684 reflections | Δρmin = −0.34 e Å−3 |
172 parameters |
C13H9N3O2S | V = 1267.89 (6) Å3 |
Mr = 271.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 16.7375 (5) Å | µ = 0.26 mm−1 |
b = 3.8789 (1) Å | T = 294 K |
c = 19.6739 (5) Å | 0.16 × 0.04 × 0.03 mm |
β = 96.956 (1)° |
Enraf–Nonius KappaCCD diffractometer | 1908 reflections with I > 2σ(I) |
4807 measured reflections | Rint = 0.040 |
2684 independent reflections |
R[F2 > 2σ(F2)] = 0.071 | 0 restraints |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.51 e Å−3 |
2684 reflections | Δρmin = −0.34 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10993 (6) | 0.7197 (3) | −0.00840 (5) | 0.0465 (3) | |
O1 | 0.08926 (19) | 0.9883 (11) | 0.21366 (15) | 0.0699 (11) | |
C13 | 0.3735 (3) | 1.3099 (15) | −0.0369 (3) | 0.0617 (13) | |
N3 | 0.3872 (3) | 1.4227 (17) | −0.0884 (3) | 0.0909 (17) | |
N1 | 0.0452 (2) | 0.7949 (10) | 0.10538 (16) | 0.0457 (9) | |
H1 | 0.0031 | 0.7186 | 0.0805 | 0.055* | |
O2 | −0.10121 (19) | 0.6665 (10) | 0.14431 (15) | 0.0643 (10) | |
N2 | 0.17909 (19) | 0.9396 (11) | 0.11374 (17) | 0.0482 (9) | |
H2 | 0.1712 | 0.991 | 0.1549 | 0.058* | |
C7 | 0.2586 (2) | 0.9846 (11) | 0.0976 (2) | 0.0415 (9) | |
C5 | −0.1517 (3) | 0.7102 (15) | 0.2424 (3) | 0.0676 (15) | |
H5 | −0.1872 | 0.6986 | 0.2752 | 0.081* | |
C2 | 0.1143 (2) | 0.8261 (11) | 0.07249 (19) | 0.0398 (9) | |
C9 | 0.3556 (2) | 1.1694 (12) | 0.0263 (2) | 0.0474 (10) | |
C8 | 0.2756 (2) | 1.1209 (12) | 0.0366 (2) | 0.0456 (10) | |
H8 | 0.2342 | 1.1798 | 0.0026 | 0.055* | |
C3 | −0.0430 (2) | 0.7960 (12) | 0.1925 (2) | 0.0471 (10) | |
C10 | 0.4180 (3) | 1.0819 (14) | 0.0767 (2) | 0.0571 (12) | |
H10 | 0.4714 | 1.1093 | 0.069 | 0.068* | |
C1 | 0.0355 (3) | 0.8694 (13) | 0.1719 (2) | 0.0495 (11) | |
C11 | 0.3993 (3) | 0.9541 (15) | 0.1381 (3) | 0.0633 (14) | |
H11 | 0.4403 | 0.9026 | 0.1729 | 0.076* | |
C4 | −0.0724 (3) | 0.8274 (14) | 0.2531 (2) | 0.0581 (13) | |
H4 | −0.0452 | 0.9105 | 0.2938 | 0.07* | |
C6 | −0.1676 (3) | 0.6183 (17) | 0.1772 (3) | 0.0705 (15) | |
H6 | −0.2168 | 0.5335 | 0.1569 | 0.085* | |
C12 | 0.3204 (3) | 0.9022 (13) | 0.1483 (2) | 0.0535 (11) | |
H12 | 0.3084 | 0.8109 | 0.1895 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0410 (6) | 0.0603 (8) | 0.0382 (5) | −0.0046 (5) | 0.0050 (4) | −0.0056 (5) |
O1 | 0.0528 (19) | 0.112 (3) | 0.0457 (17) | −0.021 (2) | 0.0093 (14) | −0.0222 (19) |
C13 | 0.049 (3) | 0.074 (4) | 0.063 (3) | −0.004 (2) | 0.015 (2) | 0.004 (3) |
N3 | 0.088 (4) | 0.115 (5) | 0.073 (3) | −0.013 (3) | 0.025 (3) | 0.017 (3) |
N1 | 0.0389 (17) | 0.061 (2) | 0.0367 (17) | −0.0055 (17) | 0.0040 (14) | −0.0029 (17) |
O2 | 0.0536 (18) | 0.096 (3) | 0.0440 (16) | −0.0177 (19) | 0.0072 (14) | −0.0081 (18) |
N2 | 0.0393 (18) | 0.069 (3) | 0.0355 (17) | −0.0083 (18) | 0.0028 (13) | −0.0001 (17) |
C7 | 0.039 (2) | 0.041 (2) | 0.045 (2) | −0.0045 (18) | 0.0045 (16) | 0.0001 (18) |
C5 | 0.058 (3) | 0.075 (4) | 0.075 (3) | 0.001 (3) | 0.031 (3) | −0.004 (3) |
C2 | 0.0358 (19) | 0.043 (2) | 0.040 (2) | −0.0019 (17) | 0.0049 (16) | 0.0019 (18) |
C9 | 0.044 (2) | 0.046 (3) | 0.053 (2) | −0.0032 (19) | 0.0071 (18) | 0.003 (2) |
C8 | 0.039 (2) | 0.052 (3) | 0.044 (2) | −0.0024 (19) | 0.0022 (17) | 0.0050 (19) |
C3 | 0.042 (2) | 0.058 (3) | 0.042 (2) | −0.004 (2) | 0.0073 (17) | −0.003 (2) |
C10 | 0.036 (2) | 0.071 (3) | 0.064 (3) | −0.005 (2) | 0.005 (2) | 0.002 (3) |
C1 | 0.047 (2) | 0.060 (3) | 0.042 (2) | −0.005 (2) | 0.0072 (18) | −0.001 (2) |
C11 | 0.043 (2) | 0.081 (4) | 0.062 (3) | −0.001 (2) | −0.011 (2) | 0.010 (3) |
C4 | 0.059 (3) | 0.073 (4) | 0.045 (2) | −0.003 (3) | 0.016 (2) | −0.009 (2) |
C6 | 0.045 (3) | 0.094 (4) | 0.073 (3) | −0.014 (3) | 0.013 (2) | 0.009 (3) |
C12 | 0.051 (2) | 0.060 (3) | 0.047 (2) | −0.008 (2) | −0.0041 (19) | 0.006 (2) |
S1—C2 | 1.637 (4) | C5—C4 | 1.395 (7) |
O1—C1 | 1.233 (5) | C5—H5 | 0.93 |
C13—N3 | 1.153 (6) | C9—C8 | 1.392 (6) |
C13—C9 | 1.422 (6) | C9—C10 | 1.392 (6) |
N1—C1 | 1.368 (5) | C8—H8 | 0.93 |
N1—C2 | 1.397 (5) | C3—C4 | 1.348 (6) |
N1—H1 | 0.86 | C3—C1 | 1.450 (6) |
O2—C6 | 1.365 (6) | C10—C11 | 1.377 (7) |
O2—C3 | 1.369 (5) | C10—H10 | 0.93 |
N2—C2 | 1.348 (5) | C11—C12 | 1.375 (6) |
N2—C7 | 1.416 (5) | C11—H11 | 0.93 |
N2—H2 | 0.86 | C4—H4 | 0.93 |
C7—C8 | 1.373 (6) | C6—H6 | 0.93 |
C7—C12 | 1.383 (6) | C12—H12 | 0.93 |
C5—C6 | 1.326 (7) | ||
N3—C13—C9 | 179.3 (6) | C9—C8—H8 | 120.5 |
C1—N1—C2 | 128.7 (3) | C4—C3—O2 | 109.9 (4) |
C1—N1—H1 | 115.6 | C4—C3—C1 | 132.0 (4) |
C2—N1—H1 | 115.6 | O2—C3—C1 | 118.1 (4) |
C6—O2—C3 | 105.9 (4) | C11—C10—C9 | 118.9 (4) |
C2—N2—C7 | 128.0 (3) | C11—C10—H10 | 120.6 |
C2—N2—H2 | 116 | C9—C10—H10 | 120.6 |
C7—N2—H2 | 116 | O1—C1—N1 | 123.7 (4) |
C8—C7—C12 | 120.2 (4) | O1—C1—C3 | 120.0 (4) |
C8—C7—N2 | 122.9 (4) | N1—C1—C3 | 116.3 (4) |
C12—C7—N2 | 116.8 (4) | C12—C11—C10 | 120.3 (4) |
C6—C5—C4 | 108.0 (4) | C12—C11—H11 | 119.9 |
C6—C5—H5 | 126 | C10—C11—H11 | 119.9 |
C4—C5—H5 | 126 | C3—C4—C5 | 106.3 (4) |
N2—C2—N1 | 113.6 (3) | C3—C4—H4 | 126.9 |
N2—C2—S1 | 127.3 (3) | C5—C4—H4 | 126.9 |
N1—C2—S1 | 119.1 (3) | C5—C6—O2 | 110.0 (4) |
C8—C9—C10 | 121.1 (4) | C5—C6—H6 | 125 |
C8—C9—C13 | 119.1 (4) | O2—C6—H6 | 125 |
C10—C9—C13 | 119.8 (4) | C11—C12—C7 | 120.6 (4) |
C7—C8—C9 | 118.9 (4) | C11—C12—H12 | 119.7 |
C7—C8—H8 | 120.5 | C7—C12—H12 | 119.7 |
C2—N2—C7—C8 | 41.1 (7) | C2—N1—C1—C3 | −177.3 (4) |
C2—N2—C7—C12 | −142.4 (5) | C4—C3—C1—O1 | −1.2 (9) |
C7—N2—C2—N1 | 176.9 (4) | O2—C3—C1—O1 | 179.5 (5) |
C7—N2—C2—S1 | −1.9 (7) | C4—C3—C1—N1 | 177.9 (5) |
C1—N1—C2—N2 | 1.3 (7) | O2—C3—C1—N1 | −1.3 (7) |
C1—N1—C2—S1 | −179.8 (4) | C9—C10—C11—C12 | 2.4 (8) |
C12—C7—C8—C9 | 0.9 (7) | O2—C3—C4—C5 | 0.5 (6) |
N2—C7—C8—C9 | 177.3 (4) | C1—C3—C4—C5 | −178.8 (5) |
C10—C9—C8—C7 | 0.1 (7) | C6—C5—C4—C3 | −0.7 (7) |
C13—C9—C8—C7 | 179.9 (5) | C4—C5—C6—O2 | 0.7 (7) |
C6—O2—C3—C4 | −0.1 (6) | C3—O2—C6—C5 | −0.4 (6) |
C6—O2—C3—C1 | 179.3 (5) | C10—C11—C12—C7 | −1.5 (8) |
C8—C9—C10—C11 | −1.7 (8) | C8—C7—C12—C11 | −0.3 (7) |
C13—C9—C10—C11 | 178.4 (5) | N2—C7—C12—C11 | −176.8 (5) |
C2—N1—C1—O1 | 1.8 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.28 | 2.701 (5) | 110 |
N1—H1···S1i | 0.86 | 2.80 | 3.629 (4) | 163 |
N2—H2···O1 | 0.86 | 1.90 | 2.622 (4) | 141 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C13H9N3O2S |
Mr | 271.29 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 16.7375 (5), 3.8789 (1), 19.6739 (5) |
β (°) | 96.956 (1) |
V (Å3) | 1267.89 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.16 × 0.04 × 0.03 |
Data collection | |
Diffractometer | Enraf–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4807, 2684, 1908 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.635 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.071, 0.208, 1.08 |
No. of reflections | 2684 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.34 |
Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
S1—C2 | 1.637 (4) | N1—C1 | 1.368 (5) |
O1—C1 | 1.233 (5) | N1—C2 | 1.397 (5) |
C13—N3 | 1.153 (6) | N2—C2 | 1.348 (5) |
C2—N2—C7—C8 | 41.1 (7) | O2—C3—C1—O1 | 179.5 (5) |
C2—N2—C7—C12 | −142.4 (5) | O2—C3—C1—N1 | −1.3 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.28 | 2.701 (5) | 110 |
N1—H1···S1i | 0.86 | 2.80 | 3.629 (4) | 163 |
N2—H2···O1 | 0.86 | 1.90 | 2.622 (4) | 141 |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.
References
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martín, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026. CAS Google Scholar
Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). Structural determinations of this kind of derivatives shed more light on the chemistry of aroylthiourea compounds and their wide variety of applications. The title compound (Fig. 1) is another example of our newly synthesized furoylthiourea derivatives.
The title compound crystallizes in the thioamide form. The bond lengths are within the ranges observed for similar compounds (Koch, 2001). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1 (1.347 (5) Å), C2—N2 (1.348 (5) Å) and C1—N1 (1.368 (5) Å) bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The furan carbonyl group is nearly coplanar with the plane of the thiourea fragment (dihedral angle 3.39(16°), whereas the benzene ring is inclined by 37.83 (12)°. The geometry in the thiourea group is stabilized by the N2—H2···O1 and N1—H1···O2 intramolecular hydrogen bonds (Fig. 1 and Table 2). The crystal structure is stabilized by two intermolecular N1—H1···S1 hydrogen bonds (Fig. 2 and Table 2) between centrosymmetrically related molecules forming dimers stacked along the [010] direction.