organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1282-o1283

Benzamidinium tetra­hydro­penta­borate sesquihydrate

aChemistry Department, University of Rome "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 29 May 2008; accepted 10 June 2008; online 19 June 2008)

The asymmetric unit of the title compound [systematic name: benzamidinium 3,3′,5,5′-tetra­hydr­oxy-1,1′-spirobi[2,4,6-trioxa-1,3,5-triboracyclo­hexa­ne](1−) sesquihydrate], C7H9N2+·B5H4O10·1.5H2O, is composed of two protonated benzamidinium cations, two tetra­hydro­penta­borate anions and three water mol­ecules of crystallization. The ions and water molecules are associated in the crystal structure by an extensive three-dimensional hydrogen-bonding network, which consists mainly of cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds.

Related literature

For crystal structure determinations of the tetra­hydro­penta­borate anion, see: Loboda et al., (1993[Loboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu. T., Petrova, O. V. & Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960-1962.], 1994[Loboda, N. V., Antipin, M. Yu, Struchkov, Yu, T., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547-549.]); Wiebcke et al. (1993[Wiebcke, M., Freyhardt, C. C., Felsche, J. & Engelhardt, G. (1993). Z. Naturforsch. Teil B, 48, 978-985.]); Turdybekov et al. (1992[Turdybekov, K. M., Struchkov, Yu, T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250-1254.]); Freyhardt et al. (1994[Freyhardt, C. C., Wiebcke, M., Felsche, J. & Engelhardt, G. (1994). J. Inclusion Phenom. Macrocyl. Chem. 18, 161-175.]); Baber et al. (2004[Baber, R. A., Charmant, J. P. H., Norman, N. C., Orpen, A. G. & Rossi, J. (2004). Acta Cryst. E60, o1086-o1088.]). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]). For hydration in mol­ecular crystals, see: Gillon et al. (2003[Gillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663-673.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N2+·B5H4O10·1.5H2O

  • Mr = 366.27

  • Triclinic, [P \overline 1]

  • a = 8.22314 (19) Å

  • b = 10.7814 (2) Å

  • c = 19.1997 (3) Å

  • α = 75.9475 (11)°

  • β = 85.4458 (16)°

  • γ = 73.6979 (13)°

  • V = 1584.74 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.975, Tmax = 0.988

  • 142668 measured reflections

  • 9063 independent reflections

  • 5688 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 0.99

  • 9063 reflections

  • 542 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.83 (2) 2.04 (2) 2.8562 (13) 167.4 (18)
O4—H4⋯O6Aii 0.87 (2) 2.00 (2) 2.8361 (13) 161.3 (18)
O7—H7⋯O5Aiii 0.89 (2) 1.80 (2) 2.6877 (13) 177 (2)
O9—H9⋯O1Aiv 0.87 (2) 1.91 (2) 2.7784 (14) 174.6 (19)
O2A—H2A⋯O10iv 0.87 (2) 1.84 (2) 2.7050 (14) 174.5 (17)
O4A—H4A⋯O6iii 0.89 (2) 1.79 (2) 2.6735 (13) 178 (2)
O7A—H7A⋯O5ii 0.92 (2) 1.93 (2) 2.8085 (15) 160 (2)
O9A—H9A⋯O2W 0.87 (2) 2.18 (2) 2.9474 (16) 147.4 (18)
N1—H11⋯O1W 0.870 (18) 2.059 (18) 2.8756 (18) 156.0 (16)
N1—H12⋯O2Av 0.872 (18) 1.996 (18) 2.8484 (15) 165.7 (15)
N2—H21⋯O1W 0.893 (17) 2.330 (17) 3.0892 (18) 142.8 (14)
N2—H22⋯O4A 0.858 (17) 2.025 (18) 2.8772 (16) 172.0 (15)
N1A—H11A⋯O10A 0.869 (19) 2.238 (19) 3.0084 (18) 147.7 (16)
N1A—H12A⋯O8 0.892 (19) 2.12 (2) 2.9646 (17) 157.4 (16)
N2A—H21A⋯O2Wiv 0.86 (2) 2.01 (2) 2.8703 (18) 175.0 (18)
N2A—H22A⋯O9 0.891 (19) 2.181 (19) 3.0717 (16) 178.4 (16)
O1W—H11W⋯O1vi 0.82 (2) 2.10 (2) 2.9180 (15) 173 (2)
O1W—H12W⋯O4vii 0.85 (2) 2.22 (2) 3.0033 (18) 153 (2)
O2W—H21W⋯O3W 0.93 (2) 1.92 (2) 2.8199 (19) 163 (2)
O2W—H22W⋯O7viii 0.91 (2) 1.90 (2) 2.8016 (14) 169.3 (19)
O3W—H31W⋯O3Wix 0.72 (3) 2.488 (10) 3.003 (3) 130.5 (17)
O3W—H32W⋯O7A 0.98 (3) 2.05 (3) 2.983 (2) 159 (2)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z; (vi) x, y, z-1; (vii) x+1, y, z-1; (viii) x-1, y, z; (ix) -x-1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED(Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The asymmetric unit of the title compound (Fig. 1) comprises two planar benzamidinium cations, two tetrahydropentaborate anions and three water molecules of crystallization. The anions consist of a central BO4 tetrahedron fused to four trigonal planar BO3(OH) units. Both cations and the anions show normal geometric parameters (Table 1). Analysis of the crystal packing (Fig. 2) shows that adjacent [B5O6(OH)4]- units are hydrogen bonded to form eight-membered rings of graph set R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999). This anion-to-anion hydrogen-bonding framework is supplemented by the formation of five hydrogen bonds from each benzamidinium cation to adjacent [B5O6(OH)4]- anions (Table 2). Interestingly, two of the three water molecules of crystallization form hydrogen bonds which involve all the available hydrogen-bond donor/acceptor sites, at variance with what has been found in a survey of 3315 organic hydrate crystal structures. In this study (Gillon et al., 2003) it has been shown that the most common environment is one in which water forms three hydrogen bonds, two as donor and one as acceptor.

Related literature top

For crystal structure determinations of the tetrahydropentaborate anion, see: Loboda et al., (1993, 1994); Wiebcke et al. (1993); Turdybekov et al. (1992); Freyhardt et al. (1994); Baber et al. (2004). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999). For hydration in molecular crystals, see: Gillon et al. (2003).

Experimental top

B(OH)3 (90 mg, 0.15 mmol, Sigma Aldrich at 99.5% purity) was added to a stirred solution of benzamidine, C7H8N2, (12 mg, 0.1 mmol, Fluka at 95% purity) in water (10 ml) and heated under reflux for 3 h. After cooling the solution to ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent over several days.

Refinement top

All H atoms were found in a difference map. Positional and isotropic parameters of H atoms of the hydroxy and amino groups, as well as positional parameters of H atoms of the water molecules having Uiso values equal to 1.5Ueq(O), were refined. H atoms of the phenyl rings were positioned with idealized geometry and refined isotropically using a riding model (C–H = 0.97 Å), and their Uiso values were kept equal to 1.2Ueq(C). An antibump restrain was introduced in the final calculation to prevent solvent molecules from approaching too close to one another.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level. Hydrogen bonding is indicated by dashed lines.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound viewed approximately down the a axis. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding are omitted. Hydrogen bonding is indicated by dashed lines.
benzamidinium 3,3',5,5'-tetrahydroxy-1,1'-spirobi[2,4,6-trioxa-1,3,5-triboracyclohexane](1-) 1.5-hydrate top
Crystal data top
C7H9N2+·B5H4O10·1.5H2OZ = 4
Mr = 366.27F(000) = 756
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.22314 (19) ÅCell parameters from 36413 reflections
b = 10.7814 (2) Åθ = 2.6–32.6°
c = 19.1997 (3) ŵ = 0.14 mm1
α = 75.9475 (11)°T = 298 K
β = 85.4458 (16)°Block, colourless
γ = 73.6979 (13)°0.15 × 0.12 × 0.10 mm
V = 1584.74 (5) Å3
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
9063 independent reflections
Radiation source: Enhance (Mo) X-ray source5688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.0696 pixels mm-1θmax = 30.0°, θmin = 2.6°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1515
Tmin = 0.975, Tmax = 0.988l = 2727
142668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
9063 reflections(Δ/σ)max = 0.001
542 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C7H9N2+·B5H4O10·1.5H2Oγ = 73.6979 (13)°
Mr = 366.27V = 1584.74 (5) Å3
Triclinic, P1Z = 4
a = 8.22314 (19) ÅMo Kα radiation
b = 10.7814 (2) ŵ = 0.14 mm1
c = 19.1997 (3) ÅT = 298 K
α = 75.9475 (11)°0.15 × 0.12 × 0.10 mm
β = 85.4458 (16)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
9063 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5688 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.988Rint = 0.050
142668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.23 e Å3
9063 reflectionsΔρmin = 0.22 e Å3
542 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.15368 (18)0.67509 (13)0.78017 (7)0.0240 (3)
O10.18508 (11)0.67022 (8)0.85446 (4)0.0285 (2)
B20.10340 (19)0.61230 (14)0.91179 (7)0.0264 (3)
O20.13937 (14)0.61947 (10)0.97783 (5)0.0411 (3)
H20.088 (2)0.5797 (18)1.0104 (10)0.061 (5)*
O30.01246 (12)0.54462 (9)0.90282 (4)0.0324 (2)
O40.14621 (13)0.46036 (10)0.82903 (6)0.0414 (3)
H40.146 (2)0.4444 (19)0.7868 (11)0.065 (6)*
B30.03994 (19)0.53439 (14)0.83403 (7)0.0275 (3)
O50.03619 (11)0.59533 (9)0.77633 (4)0.0298 (2)
O60.31411 (11)0.61782 (8)0.74602 (4)0.0276 (2)
O70.49090 (14)0.60254 (10)0.64314 (5)0.0415 (3)
H70.536 (3)0.521 (2)0.6692 (12)0.082 (7)*
O80.25892 (12)0.78921 (9)0.63891 (4)0.0337 (2)
B40.3560 (2)0.66751 (14)0.67700 (7)0.0282 (3)
O90.05933 (13)0.99063 (9)0.63637 (5)0.0370 (2)
H90.009 (3)1.037 (2)0.6630 (11)0.071 (6)*
O100.08133 (11)0.81424 (8)0.74163 (4)0.0286 (2)
B50.13056 (19)0.86493 (14)0.67397 (7)0.0261 (3)
B1A0.20283 (19)0.70679 (14)0.31266 (7)0.0251 (3)
O1A0.14676 (11)0.85043 (8)0.27918 (4)0.0294 (2)
B2A0.22073 (19)0.90684 (14)0.21888 (7)0.0256 (3)
O2A0.16712 (13)1.03877 (9)0.18762 (5)0.0331 (2)
H2A0.088 (2)1.0818 (18)0.2128 (10)0.058 (6)*
O3A0.35330 (12)0.83347 (9)0.18527 (5)0.0347 (2)
O4A0.55788 (14)0.63416 (10)0.18374 (5)0.0400 (3)
H4A0.602 (3)0.551 (2)0.2064 (11)0.077 (6)*
B3A0.4266 (2)0.70280 (14)0.21817 (7)0.0277 (3)
O5A0.36698 (11)0.64584 (8)0.28257 (4)0.0304 (2)
O6A0.08059 (12)0.63966 (9)0.29702 (5)0.0338 (2)
O7A0.14440 (18)0.53852 (17)0.33468 (7)0.0770 (5)
H7A0.126 (3)0.513 (2)0.2918 (12)0.094 (7)*
O8A0.04403 (13)0.63084 (11)0.41341 (5)0.0448 (3)
B4A0.0342 (2)0.60380 (18)0.34663 (9)0.0398 (4)
O9A0.09860 (16)0.66666 (12)0.50576 (5)0.0491 (3)
H9A0.018 (3)0.641 (2)0.5317 (11)0.075 (6)*
O10A0.21717 (11)0.69028 (9)0.38973 (4)0.0302 (2)
B5A0.0913 (2)0.66232 (15)0.43589 (8)0.0318 (3)
N10.67173 (18)0.80236 (14)0.07944 (6)0.0402 (3)
H110.631 (2)0.7525 (17)0.0989 (9)0.051 (5)*
H120.716 (2)0.8610 (17)0.1079 (9)0.050 (5)*
N20.61716 (17)0.68505 (12)0.03102 (7)0.0385 (3)
H210.581 (2)0.6316 (16)0.0105 (9)0.048 (5)*
H220.599 (2)0.6779 (16)0.0763 (10)0.049 (5)*
C10.73291 (16)0.87110 (13)0.02400 (7)0.0301 (3)
C20.71988 (18)1.00220 (14)0.01273 (8)0.0370 (3)
H2B0.67131.03540.06030.044*
C30.7765 (2)1.08450 (15)0.01889 (9)0.0471 (4)
H30.76751.17560.00660.057*
C40.8452 (2)1.03783 (17)0.08617 (10)0.0528 (4)
H4B0.88341.09650.10830.063*
C50.8603 (2)0.90783 (18)0.12271 (9)0.0514 (4)
H50.91050.87510.17000.062*
C60.80389 (19)0.82453 (15)0.09177 (8)0.0412 (3)
H60.81390.73340.11750.049*
C70.67193 (16)0.78329 (13)0.00935 (7)0.0297 (3)
N1A0.3078 (2)0.85153 (14)0.48086 (8)0.0550 (4)
H11A0.325 (2)0.8023 (18)0.4498 (10)0.058 (5)*
H12A0.268 (2)0.8266 (18)0.5252 (11)0.061 (5)*
N2A0.2464 (2)1.06351 (15)0.49387 (7)0.0478 (4)
H21A0.254 (2)1.1441 (19)0.4800 (10)0.063 (6)*
H22A0.193 (2)1.0430 (17)0.5356 (10)0.058 (5)*
C1A0.38252 (19)1.01425 (14)0.38368 (7)0.0358 (3)
C2A0.5160 (2)0.92500 (17)0.35919 (8)0.0490 (4)
H23A0.55920.83640.38890.059*
C3A0.5890 (2)0.96110 (19)0.29228 (9)0.0571 (5)
H3A0.68220.89760.27500.069*
C4A0.5286 (2)1.08720 (19)0.25051 (8)0.0550 (5)
H41A0.58111.11310.20420.066*
C5A0.3948 (2)1.17638 (17)0.27401 (8)0.0493 (4)
H5A0.35241.26480.24410.059*
C6A0.3197 (2)1.14088 (15)0.34044 (7)0.0411 (3)
H6A0.22401.20380.35670.049*
C7A0.30793 (19)0.97547 (15)0.45592 (7)0.0378 (3)
O1W0.53676 (17)0.59539 (14)0.10037 (7)0.0554 (3)
H11W0.441 (3)0.614 (2)0.1163 (13)0.089*
H12W0.603 (3)0.545 (2)0.1244 (12)0.089*
O2W0.25372 (16)0.66371 (12)0.54656 (6)0.0512 (3)
H21W0.296 (3)0.649 (2)0.5068 (12)0.082*
H22W0.335 (3)0.651 (2)0.5809 (12)0.082*
O3W0.41457 (19)0.58780 (16)0.44572 (9)0.0732 (4)
H31W0.492 (4)0.568 (2)0.4515 (8)0.117*
H32W0.329 (3)0.549 (3)0.4128 (15)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0284 (8)0.0219 (7)0.0200 (6)0.0071 (6)0.0052 (6)0.0030 (5)
O10.0352 (5)0.0315 (5)0.0218 (4)0.0160 (4)0.0038 (4)0.0049 (4)
B20.0314 (8)0.0229 (7)0.0236 (6)0.0070 (6)0.0053 (6)0.0052 (5)
O20.0598 (7)0.0498 (6)0.0233 (5)0.0322 (6)0.0054 (5)0.0078 (4)
O30.0402 (5)0.0402 (5)0.0224 (4)0.0222 (5)0.0081 (4)0.0070 (4)
O40.0500 (6)0.0522 (6)0.0330 (5)0.0315 (5)0.0091 (5)0.0129 (5)
B30.0278 (8)0.0276 (7)0.0271 (7)0.0081 (7)0.0052 (6)0.0071 (6)
O50.0369 (5)0.0338 (5)0.0222 (4)0.0170 (4)0.0050 (4)0.0061 (4)
O60.0298 (5)0.0230 (4)0.0245 (4)0.0036 (4)0.0067 (4)0.0013 (3)
O70.0450 (6)0.0287 (5)0.0366 (5)0.0006 (5)0.0203 (5)0.0003 (4)
O80.0427 (6)0.0266 (5)0.0232 (4)0.0019 (4)0.0090 (4)0.0016 (4)
B40.0306 (8)0.0252 (7)0.0262 (7)0.0073 (7)0.0062 (6)0.0038 (6)
O90.0433 (6)0.0262 (5)0.0293 (5)0.0011 (5)0.0089 (4)0.0009 (4)
O100.0313 (5)0.0230 (4)0.0251 (4)0.0024 (4)0.0077 (4)0.0021 (3)
B50.0283 (8)0.0250 (7)0.0234 (6)0.0065 (7)0.0033 (6)0.0046 (6)
B1A0.0308 (8)0.0224 (7)0.0213 (6)0.0086 (6)0.0070 (6)0.0041 (5)
O1A0.0314 (5)0.0227 (4)0.0290 (4)0.0046 (4)0.0097 (4)0.0025 (3)
B2A0.0287 (8)0.0234 (7)0.0225 (6)0.0061 (7)0.0020 (6)0.0030 (5)
O2A0.0392 (6)0.0231 (5)0.0298 (5)0.0035 (5)0.0113 (4)0.0022 (4)
O3A0.0403 (6)0.0254 (5)0.0273 (4)0.0006 (4)0.0132 (4)0.0008 (4)
O4A0.0451 (6)0.0278 (5)0.0310 (5)0.0040 (5)0.0176 (5)0.0016 (4)
B3A0.0313 (8)0.0247 (7)0.0243 (6)0.0062 (7)0.0064 (6)0.0041 (6)
O5A0.0340 (5)0.0222 (4)0.0273 (4)0.0031 (4)0.0108 (4)0.0004 (3)
O6A0.0428 (6)0.0401 (5)0.0258 (4)0.0227 (5)0.0096 (4)0.0107 (4)
O7A0.0885 (10)0.1351 (13)0.0538 (7)0.0873 (10)0.0356 (7)0.0531 (8)
O8A0.0456 (6)0.0691 (7)0.0348 (5)0.0343 (6)0.0169 (5)0.0235 (5)
B4A0.0435 (10)0.0510 (10)0.0350 (8)0.0250 (8)0.0115 (7)0.0181 (7)
O9A0.0629 (7)0.0669 (7)0.0265 (5)0.0346 (6)0.0105 (5)0.0115 (5)
O10A0.0352 (5)0.0343 (5)0.0226 (4)0.0143 (4)0.0043 (4)0.0054 (4)
B5A0.0396 (9)0.0303 (8)0.0263 (7)0.0122 (7)0.0066 (6)0.0066 (6)
N10.0556 (8)0.0442 (7)0.0269 (6)0.0247 (7)0.0057 (6)0.0083 (5)
N20.0525 (8)0.0360 (7)0.0302 (6)0.0198 (6)0.0052 (6)0.0062 (5)
C10.0297 (7)0.0317 (7)0.0289 (6)0.0092 (6)0.0054 (5)0.0079 (5)
C20.0374 (8)0.0330 (7)0.0385 (7)0.0088 (6)0.0037 (6)0.0065 (6)
C30.0453 (9)0.0326 (8)0.0653 (11)0.0120 (7)0.0026 (8)0.0141 (7)
C40.0461 (10)0.0553 (10)0.0698 (11)0.0189 (8)0.0000 (8)0.0323 (9)
C50.0511 (10)0.0648 (11)0.0447 (9)0.0196 (9)0.0080 (7)0.0175 (8)
C60.0459 (9)0.0409 (8)0.0370 (7)0.0136 (7)0.0034 (6)0.0062 (6)
C70.0295 (7)0.0286 (7)0.0286 (6)0.0062 (6)0.0039 (5)0.0055 (5)
N1A0.0941 (12)0.0436 (8)0.0342 (7)0.0350 (8)0.0173 (8)0.0086 (6)
N2A0.0679 (10)0.0420 (8)0.0358 (7)0.0226 (7)0.0164 (7)0.0096 (6)
C1A0.0457 (9)0.0414 (8)0.0259 (6)0.0220 (8)0.0011 (6)0.0067 (6)
C2A0.0588 (11)0.0464 (9)0.0380 (8)0.0137 (9)0.0055 (8)0.0050 (7)
C3A0.0572 (11)0.0706 (12)0.0416 (9)0.0162 (10)0.0106 (8)0.0142 (8)
C4A0.0590 (11)0.0799 (13)0.0296 (7)0.0331 (11)0.0037 (7)0.0037 (8)
C5A0.0600 (11)0.0554 (10)0.0319 (7)0.0250 (9)0.0059 (7)0.0039 (7)
C6A0.0472 (9)0.0451 (8)0.0332 (7)0.0181 (7)0.0022 (6)0.0058 (6)
C7A0.0462 (9)0.0422 (8)0.0293 (7)0.0219 (7)0.0014 (6)0.0055 (6)
O1W0.0458 (7)0.0704 (9)0.0604 (8)0.0210 (7)0.0036 (6)0.0271 (6)
O2W0.0620 (8)0.0562 (7)0.0451 (6)0.0315 (6)0.0243 (6)0.0193 (5)
O3W0.0637 (10)0.0796 (10)0.0819 (10)0.0187 (8)0.0071 (8)0.0325 (8)
Geometric parameters (Å, º) top
B1—O11.4555 (15)N1—H110.870 (18)
B1—O61.4674 (17)N1—H120.872 (18)
B1—O101.4771 (15)N2—C71.3188 (16)
B1—O51.4788 (16)N2—H210.893 (17)
O1—B21.3553 (15)N2—H220.858 (17)
B2—O21.3494 (16)C1—C61.3874 (19)
B2—O31.3955 (16)C1—C21.3962 (18)
O2—H20.83 (2)C1—C71.4729 (18)
O3—B31.3929 (16)C2—C31.382 (2)
O4—B31.3608 (17)C2—H2B0.9700
O4—H40.87 (2)C3—C41.372 (2)
B3—O51.3484 (16)C3—H30.9700
O6—B41.3593 (16)C4—C51.382 (2)
O7—B41.3472 (19)C4—H4B0.9700
O7—H70.89 (2)C5—C61.383 (2)
O8—B51.3798 (18)C5—H50.9700
O8—B41.3900 (17)C6—H60.9700
O9—B51.3592 (17)N1A—C7A1.3057 (19)
O9—H90.87 (2)N1A—H11A0.869 (19)
O10—B51.3588 (15)N1A—H12A0.892 (19)
B1A—O10A1.4572 (15)N2A—C7A1.302 (2)
B1A—O5A1.4664 (18)N2A—H21A0.86 (2)
B1A—O6A1.4785 (16)N2A—H22A0.891 (19)
B1A—O1A1.4788 (16)C1A—C2A1.377 (2)
O1A—B2A1.3544 (16)C1A—C6A1.394 (2)
B2A—O2A1.3613 (16)C1A—C7A1.4839 (18)
B2A—O3A1.3721 (18)C2A—C3A1.389 (2)
O2A—H2A0.87 (2)C2A—H23A0.9700
O3A—B3A1.3778 (17)C3A—C4A1.376 (3)
O4A—B3A1.3514 (19)C3A—H3A0.9700
O4A—H4A0.89 (2)C4A—C5A1.370 (3)
B3A—O5A1.3601 (16)C4A—H41A0.9700
O6A—B4A1.3533 (18)C5A—C6A1.388 (2)
O7A—B4A1.3559 (19)C5A—H5A0.9700
O7A—H7A0.92 (2)C6A—H6A0.9700
O8A—B4A1.3737 (18)O1W—H11W0.82 (2)
O8A—B5A1.3781 (18)O1W—H12W0.85 (2)
O9A—B5A1.3604 (18)O2W—H21W0.93 (2)
O9A—H9A0.87 (2)O2W—H22W0.91 (2)
O10A—B5A1.3592 (17)O3W—H31W0.72 (3)
N1—C71.3110 (17)O3W—H32W0.98 (3)
O1—B1—O6109.01 (10)C7—N1—H12122.4 (11)
O1—B1—O10109.67 (10)H11—N1—H12117.7 (16)
O6—B1—O10110.02 (9)C7—N2—H21119.9 (11)
O1—B1—O5110.83 (9)C7—N2—H22121.9 (11)
O6—B1—O5107.59 (10)H21—N2—H22117.4 (15)
O10—B1—O5109.70 (10)C6—C1—C2119.52 (13)
B2—O1—B1124.25 (10)C6—C1—C7120.52 (12)
O2—B2—O1118.37 (12)C2—C1—C7119.97 (12)
O2—B2—O3120.85 (11)C3—C2—C1119.80 (14)
O1—B2—O3120.77 (11)C3—C2—H2B120.1
B2—O2—H2113.3 (13)C1—C2—H2B120.1
B3—O3—B2118.95 (10)C4—C3—C2120.24 (14)
B3—O4—H4113.7 (13)C4—C3—H3119.9
O5—B3—O4122.84 (12)C2—C3—H3119.9
O5—B3—O3120.79 (11)C3—C4—C5120.45 (14)
O4—B3—O3116.37 (11)C3—C4—H4B119.8
B3—O5—B1124.05 (10)C5—C4—H4B119.8
B4—O6—B1123.03 (10)C4—C5—C6119.90 (15)
B4—O7—H7111.2 (13)C4—C5—H5120.0
B5—O8—B4119.26 (10)C6—C5—H5120.0
O7—B4—O6122.12 (12)C5—C6—C1120.09 (14)
O7—B4—O8117.66 (11)C5—C6—H6120.0
O6—B4—O8120.22 (13)C1—C6—H6120.0
B5—O9—H9111.6 (13)N1—C7—N2119.55 (13)
B5—O10—B1122.74 (11)N1—C7—C1120.16 (12)
O10—B5—O9123.50 (13)N2—C7—C1120.28 (12)
O10—B5—O8120.89 (11)C7A—N1A—H11A116.7 (12)
O9—B5—O8115.61 (11)C7A—N1A—H12A119.3 (12)
O10A—B1A—O5A109.86 (11)H11A—N1A—H12A122.5 (17)
O10A—B1A—O6A111.11 (9)C7A—N2A—H21A122.3 (13)
O5A—B1A—O6A106.98 (10)C7A—N2A—H22A121.0 (11)
O10A—B1A—O1A108.47 (10)H21A—N2A—H22A116.7 (17)
O5A—B1A—O1A110.50 (9)C2A—C1A—C6A119.51 (13)
O6A—B1A—O1A109.93 (11)C2A—C1A—C7A119.90 (13)
B2A—O1A—B1A122.37 (10)C6A—C1A—C7A120.59 (14)
O1A—B2A—O2A122.20 (13)C1A—C2A—C3A120.39 (16)
O1A—B2A—O3A121.68 (11)C1A—C2A—H23A119.8
O2A—B2A—O3A116.12 (11)C3A—C2A—H23A119.8
B2A—O2A—H2A112.4 (12)C4A—C3A—C2A119.79 (18)
B2A—O3A—B3A119.19 (10)C4A—C3A—H3A120.1
B3A—O4A—H4A115.1 (14)C2A—C3A—H3A120.1
O4A—B3A—O5A121.78 (12)C5A—C4A—C3A120.32 (15)
O4A—B3A—O3A117.46 (11)C5A—C4A—H41A119.8
O5A—B3A—O3A120.76 (13)C3A—C4A—H41A119.8
B3A—O5A—B1A122.46 (10)C4A—C5A—C6A120.38 (15)
B4A—O6A—B1A121.68 (10)C4A—C5A—H5A119.8
B4A—O7A—H7A113.7 (14)C6A—C5A—H5A119.8
B4A—O8A—B5A118.13 (11)C5A—C6A—C1A119.59 (16)
O6A—B4A—O7A123.06 (13)C5A—C6A—H6A120.2
O6A—B4A—O8A121.13 (13)C1A—C6A—H6A120.2
O7A—B4A—O8A115.80 (13)N2A—C7A—N1A120.97 (14)
B5A—O9A—H9A112.3 (13)N2A—C7A—C1A120.29 (13)
B5A—O10A—B1A121.15 (11)N1A—C7A—C1A118.74 (14)
O10A—B5A—O9A119.12 (13)H11W—O1W—H12W107 (2)
O10A—B5A—O8A121.56 (12)H21W—O2W—H22W102.8 (18)
O9A—B5A—O8A119.33 (12)H31W—O3W—H32W118 (3)
C7—N1—H11119.8 (11)
O6—B1—O1—B2124.83 (12)O6A—B1A—O5A—B3A99.35 (13)
O10—B1—O1—B2114.67 (13)O1A—B1A—O5A—B3A20.30 (16)
O5—B1—O1—B26.59 (17)O10A—B1A—O6A—B4A17.60 (18)
B1—O1—B2—O2177.28 (12)O5A—B1A—O6A—B4A137.51 (13)
B1—O1—B2—O34.01 (19)O1A—B1A—O6A—B4A102.48 (14)
O2—B2—O3—B3177.04 (12)B1A—O6A—B4A—O7A177.91 (16)
O1—B2—O3—B31.64 (19)B1A—O6A—B4A—O8A1.3 (2)
B2—O3—B3—O53.89 (19)B5A—O8A—B4A—O6A17.0 (2)
B2—O3—B3—O4176.05 (12)B5A—O8A—B4A—O7A162.24 (15)
O4—B3—O5—B1179.28 (12)O5A—B1A—O10A—B5A140.66 (12)
O3—B3—O5—B10.7 (2)O6A—B1A—O10A—B5A22.48 (17)
O1—B1—O5—B34.27 (17)O1A—B1A—O10A—B5A98.46 (13)
O6—B1—O5—B3123.36 (12)B1A—O10A—B5A—O9A170.58 (12)
O10—B1—O5—B3116.98 (13)B1A—O10A—B5A—O8A8.9 (2)
O1—B1—O6—B4141.66 (11)B4A—O8A—B5A—O10A12.0 (2)
O10—B1—O6—B421.37 (16)B4A—O8A—B5A—O9A168.55 (14)
O5—B1—O6—B498.08 (13)C6—C1—C2—C30.5 (2)
B1—O6—B4—O7169.70 (12)C7—C1—C2—C3179.67 (13)
B1—O6—B4—O810.48 (19)C1—C2—C3—C40.0 (2)
B5—O8—B4—O7173.33 (12)C2—C3—C4—C50.7 (3)
B5—O8—B4—O66.49 (19)C3—C4—C5—C60.9 (3)
O1—B1—O10—B5137.70 (12)C4—C5—C6—C10.3 (2)
O6—B1—O10—B517.80 (16)C2—C1—C6—C50.4 (2)
O5—B1—O10—B5100.36 (13)C7—C1—C6—C5179.81 (14)
B1—O10—B5—O9176.52 (12)C6—C1—C7—N1151.51 (14)
B1—O10—B5—O83.40 (19)C2—C1—C7—N128.3 (2)
B4—O8—B5—O109.94 (19)C6—C1—C7—N228.5 (2)
B4—O8—B5—O9170.13 (12)C2—C1—C7—N2151.66 (13)
O10A—B1A—O1A—B2A133.89 (12)C6A—C1A—C2A—C3A0.8 (2)
O5A—B1A—O1A—B2A13.41 (16)C7A—C1A—C2A—C3A178.70 (15)
O6A—B1A—O1A—B2A104.44 (13)C1A—C2A—C3A—C4A0.6 (3)
B1A—O1A—B2A—O2A179.00 (11)C2A—C3A—C4A—C5A1.3 (3)
B1A—O1A—B2A—O3A0.22 (19)C3A—C4A—C5A—C6A0.5 (3)
O1A—B2A—O3A—B3A8.04 (19)C4A—C5A—C6A—C1A0.8 (2)
O2A—B2A—O3A—B3A172.69 (11)C2A—C1A—C6A—C5A1.5 (2)
B2A—O3A—B3A—O4A179.36 (12)C7A—C1A—C6A—C5A177.97 (13)
B2A—O3A—B3A—O5A1.16 (19)C2A—C1A—C7A—N2A147.16 (16)
O4A—B3A—O5A—B1A165.33 (12)C6A—C1A—C7A—N2A32.3 (2)
O3A—B3A—O5A—B1A14.13 (19)C2A—C1A—C7A—N1A31.8 (2)
O10A—B1A—O5A—B3A139.94 (12)C6A—C1A—C7A—N1A148.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.83 (2)2.04 (2)2.8562 (13)167.4 (18)
O4—H4···O6Aii0.87 (2)2.00 (2)2.8361 (13)161.3 (18)
O7—H7···O5Aiii0.89 (2)1.80 (2)2.6877 (13)177 (2)
O9—H9···O1Aiv0.87 (2)1.91 (2)2.7784 (14)174.6 (19)
O2A—H2A···O10iv0.87 (2)1.84 (2)2.7050 (14)174.5 (17)
O4A—H4A···O6iii0.89 (2)1.79 (2)2.6735 (13)178 (2)
O7A—H7A···O5ii0.92 (2)1.93 (2)2.8085 (15)160 (2)
O9A—H9A···O2W0.87 (2)2.18 (2)2.9474 (16)147.4 (18)
N1—H11···O1W0.870 (18)2.059 (18)2.8756 (18)156.0 (16)
N1—H12···O2Av0.872 (18)1.996 (18)2.8484 (15)165.7 (15)
N2—H21···O1W0.893 (17)2.330 (17)3.0892 (18)142.8 (14)
N2—H22···O4A0.858 (17)2.025 (18)2.8772 (16)172.0 (15)
N1A—H11A···O10A0.869 (19)2.238 (19)3.0084 (18)147.7 (16)
N1A—H12A···O80.892 (19)2.12 (2)2.9646 (17)157.4 (16)
N2A—H21A···O2Wiv0.86 (2)2.01 (2)2.8703 (18)175.0 (18)
N2A—H22A···O90.891 (19)2.181 (19)3.0717 (16)178.4 (16)
O1W—H11W···O1vi0.82 (2)2.10 (2)2.9180 (15)173 (2)
O1W—H12W···O4vii0.85 (2)2.22 (2)3.0033 (18)153 (2)
O2W—H21W···O3W0.93 (2)1.92 (2)2.8199 (19)163 (2)
O2W—H22W···O7viii0.91 (2)1.90 (2)2.8016 (14)169.3 (19)
O3W—H31W···O3Wix0.72 (3)2.488 (10)3.003 (3)130.5 (17)
O3W—H32W···O7A0.98 (3)2.05 (3)2.983 (2)159 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+2, z+1; (v) x+1, y+2, z; (vi) x, y, z1; (vii) x+1, y, z1; (viii) x1, y, z; (ix) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H9N2+·B5H4O10·1.5H2O
Mr366.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.22314 (19), 10.7814 (2), 19.1997 (3)
α, β, γ (°)75.9475 (11), 85.4458 (16), 73.6979 (13)
V3)1584.74 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.975, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
142668, 9063, 5688
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 0.99
No. of reflections9063
No. of parameters542
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.83 (2)2.04 (2)2.8562 (13)167.4 (18)
O4—H4···O6Aii0.87 (2)2.00 (2)2.8361 (13)161.3 (18)
O7—H7···O5Aiii0.89 (2)1.80 (2)2.6877 (13)177 (2)
O9—H9···O1Aiv0.87 (2)1.91 (2)2.7784 (14)174.6 (19)
O2A—H2A···O10iv0.87 (2)1.84 (2)2.7050 (14)174.5 (17)
O4A—H4A···O6iii0.89 (2)1.79 (2)2.6735 (13)178 (2)
O7A—H7A···O5ii0.92 (2)1.93 (2)2.8085 (15)160 (2)
O9A—H9A···O2W0.87 (2)2.18 (2)2.9474 (16)147.4 (18)
N1—H11···O1W0.870 (18)2.059 (18)2.8756 (18)156.0 (16)
N1—H12···O2Av0.872 (18)1.996 (18)2.8484 (15)165.7 (15)
N2—H21···O1W0.893 (17)2.330 (17)3.0892 (18)142.8 (14)
N2—H22···O4A0.858 (17)2.025 (18)2.8772 (16)172.0 (15)
N1A—H11A···O10A0.869 (19)2.238 (19)3.0084 (18)147.7 (16)
N1A—H12A···O80.892 (19)2.12 (2)2.9646 (17)157.4 (16)
N2A—H21A···O2Wiv0.86 (2)2.01 (2)2.8703 (18)175.0 (18)
N2A—H22A···O90.891 (19)2.181 (19)3.0717 (16)178.4 (16)
O1W—H11W···O1vi0.82 (2)2.10 (2)2.9180 (15)173 (2)
O1W—H12W···O4vii0.85 (2)2.22 (2)3.0033 (18)153 (2)
O2W—H21W···O3W0.93 (2)1.92 (2)2.8199 (19)163 (2)
O2W—H22W···O7viii0.91 (2)1.90 (2)2.8016 (14)169.3 (19)
O3W—H31W···O3Wix0.72 (3)2.488 (10)3.003 (3)130.5 (17)
O3W—H32W···O7A0.98 (3)2.05 (3)2.983 (2)159 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+2, z+1; (v) x+1, y+2, z; (vi) x, y, z1; (vii) x+1, y, z1; (viii) x1, y, z; (ix) x1, y+1, z+1.
 

Acknowledgements

We thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaber, R. A., Charmant, J. P. H., Norman, N. C., Orpen, A. G. & Rossi, J. (2004). Acta Cryst. E60, o1086–o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreyhardt, C. C., Wiebcke, M., Felsche, J. & Engelhardt, G. (1994). J. Inclusion Phenom. Macrocyl. Chem. 18, 161–175.  CSD CrossRef CAS Web of Science Google Scholar
First citationGillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663–673.  Web of Science CrossRef CAS Google Scholar
First citationLoboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu. T., Petrova, O. V. & Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960–1962.  CAS Google Scholar
First citationLoboda, N. V., Antipin, M. Yu, Struchkov, Yu, T., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547–549.  CAS Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurdybekov, K. M., Struchkov, Yu, T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. & Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250–1254.  CAS Google Scholar
First citationWiebcke, M., Freyhardt, C. C., Felsche, J. & Engelhardt, G. (1993). Z. Naturforsch. Teil B, 48, 978–985.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1282-o1283
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds