organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Di­methyl-10-(4-meth­oxy­phen­yl)-9-(4-nitro­phen­yl)-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aJiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: mcb_898.student@sina.com.cn

(Received 8 May 2008; accepted 8 June 2008; online 13 June 2008)

The title compound, C28H28N2O5, consists of a partially hydrogenated acridine ring system with two substituted phenyl substituents on the dihydro­pyridine ring which are both nearly perpendicular to the mean plane of the acridine unit [dihedral angles of 81.3 (1) and 89.6 (1)° between the central ring of acridine and the methoxyphenyl and nitrophenyl rings, respectively]. The dihydro­pyridine ring is almost planar, whereas both the outer unsymmetrical six-membered rings adopt half-chair conformations.

Related literature

For related literature, see: Ganesh et al. (1998[Ganesh, V. K., Banumathi, S., Velmurugan, D., Ramasubbu, N. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 633-635.]); Jang et al. (2005[Jang, H., Li, T., Tu, S. & Zou, X. (2005). Acta Cryst. E61, o2296-o2298.]); Shanmugasundaram et al. (1996[Shanmugasundaram, P., Murugan, P., Ramakrishnan, V. T., Srividya, N. & Ramamurthy, P. (1996). Heteroatom. Chem. 6, 17.]); Wang et al. (2003[Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139-o1140.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28N2O5

  • Mr = 472.52

  • Monoclinic, P 21 /c

  • a = 12.463 (2) Å

  • b = 12.104 (2) Å

  • c = 16.408 (3) Å

  • β = 98.251 (5)°

  • V = 2449.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.80 × 0.59 × 0.58 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.760, Tmax = 0.950

  • 23202 measured reflections

  • 4466 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.123

  • S = 1.17

  • 4466 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Selected bond lengths (Å)

O1—C6 1.227 (2)
O2—C12 1.222 (2)

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With a 1,4-DHP parent nucleus, acridine-1,8-diones have been shown to have very high lasing efficiencies and have been used as photoinitiators (Shanmugasundaram, et al., 1996). Symmetrical acridinediones which contain two identical cyclohexanone rings fused to the DHP rings have been reported (Ganesh, et al., 1998; Jang, et al., 2005; Wang, et al., 2003). However, the structures of acridinediones whose dihydropyridine ring linking two unsymmetrical cyclohexanone rings are rare. Here we report the structure of unsymmetrical acridinedione(I). It was synthesized by the reaction of 4-nitrobenzaldehydes, 3-(4-Methoxy-phenylamino)-5,5-dimethyl-cyclohex-2-enone and 1,3-cyclohexanedione in refluxing water.

The acridine moiety (Figure 1) is nearly coplanar; the dihedral angle between the aromatic ring which is linked to the carbon and pyridine ring is 81.31°; the dihedral angle between the aromatic ring linked to the nitrogen and pyridine ring is 89.57°. The packing arrangement in a unit cell of the title molecule is shown in Fig. 2.

Related literature top

For related literature, see: Ganesh et al. (1998); Jang et al. (2005); Shanmugasundaram et al. (1996); Wang et al. (2003).

Experimental top

3,3-dimethyl-9-(4-nitrophenyl)-10-(4-methoxylphenyl)-decahydroacridine -1,8-dione were dissolved in ethanol. The mixture was set aside to crystallize. Suitable crystals for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

The H atoms bonded to N atom were located from difference density maps and refined isotropically. The H atoms bonded to C atoms were located geometrically and treated as riding, with C—H distances of 0.95–1.00 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for others.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing diagram in the crystal for (I).
[Figure 3] Fig. 3. The formation of the title compound.
3,3-Dimethyl-10-(4-methoxyphenyl)-9-(4-nitrophenyl)- 1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione top
Crystal data top
C28H28N2O5F(000) = 1000
Mr = 472.52Dx = 1.281 Mg m3
Monoclinic, P21/cMelting point: 498 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 12.463 (2) ÅCell parameters from 9180 reflections
b = 12.104 (2) Åθ = 3.0–25.3°
c = 16.408 (3) ŵ = 0.09 mm1
β = 98.251 (5)°T = 293 K
V = 2449.6 (7) Å3Block, yellow
Z = 40.80 × 0.59 × 0.58 mm
Data collection top
Rigaku Mercury
diffractometer
4466 independent reflections
Radiation source: fine-focus sealed tube3901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
k = 1414
Tmin = 0.760, Tmax = 0.950l = 1919
23202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.665P]
where P = (Fo2 + 2Fc2)/3
4466 reflections(Δ/σ)max < 0.001
338 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C28H28N2O5V = 2449.6 (7) Å3
Mr = 472.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.463 (2) ŵ = 0.09 mm1
b = 12.104 (2) ÅT = 293 K
c = 16.408 (3) Å0.80 × 0.59 × 0.58 mm
β = 98.251 (5)°
Data collection top
Rigaku Mercury
diffractometer
4466 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
3901 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.950Rint = 0.030
23202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.17Δρmax = 0.15 e Å3
4466 reflectionsΔρmin = 0.14 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.08638 (11)1.24134 (11)0.47495 (8)0.0523 (4)
O20.05773 (12)1.11707 (12)0.18637 (8)0.0618 (4)
O30.5690 (14)1.4049 (12)0.3168 (11)0.082 (3)0.50
O3'0.5542 (16)1.4082 (13)0.3017 (12)0.109 (5)0.50
O40.6106 (9)1.2617 (11)0.2566 (5)0.114 (3)0.50
O4'0.6318 (8)1.2452 (10)0.2980 (5)0.102 (3)0.50
O50.35763 (13)0.47297 (12)0.51861 (10)0.0698 (4)
N10.19057 (12)0.88250 (11)0.40821 (8)0.0387 (3)
N20.55282 (17)1.3088 (2)0.30009 (14)0.0733 (6)
C10.18027 (13)0.96528 (14)0.46587 (10)0.0366 (4)
C20.15262 (13)1.06903 (13)0.44043 (10)0.0350 (4)
C30.15223 (13)1.10285 (13)0.35148 (10)0.0364 (4)
H30.09511.15820.33770.044*
C40.12365 (13)1.00353 (14)0.29784 (10)0.0362 (4)
C50.14825 (13)0.90001 (14)0.32513 (10)0.0362 (4)
C60.11987 (13)1.14962 (14)0.49803 (10)0.0381 (4)
C70.12427 (16)1.11571 (16)0.58669 (11)0.0482 (5)
H7A0.05431.08590.59470.058*
H7B0.13751.18070.62120.058*
C80.21130 (16)1.03015 (15)0.61444 (11)0.0457 (4)
C90.19433 (16)0.93206 (14)0.55494 (11)0.0459 (4)
H9A0.25620.88290.56590.055*
H9B0.13070.89130.56530.055*
C100.32415 (18)1.08004 (19)0.61482 (14)0.0644 (6)
H10A0.33241.10320.56010.097*
H10B0.37821.02560.63350.097*
H10C0.33271.14260.65110.097*
C110.2002 (2)0.98929 (19)0.70144 (12)0.0662 (6)
H11A0.25550.93560.71860.099*
H11B0.13010.95620.70120.099*
H11C0.20791.05060.73900.099*
C120.07097 (14)1.02312 (16)0.21323 (11)0.0434 (4)
C130.03387 (17)0.92376 (17)0.16216 (12)0.0556 (5)
H13A0.02730.94270.10420.067*
H13B0.03690.90090.17390.067*
C140.11349 (17)0.82947 (16)0.18061 (11)0.0516 (5)
H14A0.08670.76530.14860.062*
H14B0.18250.85030.16430.062*
C150.13000 (16)0.79997 (15)0.27115 (11)0.0458 (4)
H15A0.06670.76060.28400.055*
H15B0.19200.75110.28270.055*
C160.25980 (13)1.15546 (14)0.33919 (10)0.0366 (4)
C170.28131 (16)1.26474 (15)0.36177 (12)0.0490 (5)
H170.22971.30490.38500.059*
C180.37723 (17)1.31493 (17)0.35050 (12)0.0549 (5)
H180.39071.38810.36590.066*
C190.45231 (15)1.25482 (17)0.31624 (12)0.0495 (5)
C200.43494 (16)1.14667 (18)0.29390 (14)0.0603 (6)
H200.48721.10700.27110.072*
C210.33872 (15)1.09742 (16)0.30581 (13)0.0522 (5)
H210.32661.02380.29110.063*
C220.23073 (14)0.77423 (14)0.43564 (10)0.0391 (4)
C230.34019 (15)0.75163 (16)0.44032 (13)0.0521 (5)
H230.38700.80520.42500.062*
C240.38016 (17)0.64987 (17)0.46765 (14)0.0596 (5)
H240.45370.63460.47040.072*
C250.31091 (17)0.57056 (15)0.49100 (12)0.0494 (5)
C260.20155 (16)0.59242 (15)0.48461 (12)0.0492 (5)
H260.15450.53850.49890.059*
C270.16152 (15)0.69446 (15)0.45690 (11)0.0451 (4)
H270.08770.70900.45270.054*
C280.2998 (2)0.40427 (18)0.56706 (16)0.0784 (7)
H28A0.27840.44650.61160.118*
H28B0.34530.34410.58890.118*
H28C0.23640.37560.53350.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0602 (9)0.0436 (8)0.0537 (8)0.0140 (6)0.0105 (6)0.0031 (6)
O20.0759 (10)0.0588 (9)0.0479 (8)0.0180 (8)0.0002 (7)0.0060 (7)
O30.078 (5)0.076 (6)0.096 (5)0.035 (3)0.028 (5)0.016 (5)
O3'0.096 (6)0.084 (6)0.145 (10)0.049 (4)0.009 (5)0.041 (6)
O40.075 (6)0.145 (8)0.135 (7)0.039 (5)0.057 (5)0.039 (6)
O4'0.048 (3)0.103 (4)0.160 (8)0.012 (3)0.034 (5)0.008 (6)
O50.0831 (11)0.0435 (8)0.0836 (11)0.0198 (7)0.0153 (8)0.0137 (7)
N10.0463 (8)0.0316 (7)0.0379 (8)0.0016 (6)0.0053 (6)0.0016 (6)
N20.0583 (13)0.0830 (16)0.0799 (15)0.0259 (12)0.0148 (11)0.0027 (14)
C10.0348 (9)0.0364 (9)0.0390 (9)0.0037 (7)0.0064 (7)0.0027 (7)
C20.0334 (9)0.0337 (9)0.0383 (9)0.0013 (7)0.0069 (7)0.0016 (7)
C30.0371 (9)0.0342 (9)0.0378 (9)0.0039 (7)0.0056 (7)0.0010 (7)
C40.0324 (9)0.0389 (9)0.0377 (9)0.0005 (7)0.0066 (7)0.0027 (7)
C50.0322 (9)0.0386 (9)0.0386 (9)0.0033 (7)0.0080 (7)0.0030 (7)
C60.0325 (9)0.0383 (10)0.0440 (10)0.0012 (7)0.0076 (7)0.0039 (8)
C70.0569 (12)0.0462 (11)0.0437 (10)0.0012 (9)0.0146 (9)0.0062 (8)
C80.0562 (12)0.0423 (10)0.0385 (10)0.0048 (9)0.0068 (8)0.0017 (8)
C90.0589 (12)0.0393 (10)0.0396 (10)0.0030 (9)0.0074 (8)0.0020 (8)
C100.0601 (14)0.0671 (14)0.0610 (13)0.0104 (11)0.0076 (10)0.0018 (11)
C110.0981 (18)0.0610 (14)0.0400 (11)0.0044 (12)0.0111 (11)0.0001 (10)
C120.0374 (10)0.0524 (12)0.0405 (10)0.0068 (8)0.0064 (7)0.0030 (9)
C130.0523 (12)0.0662 (13)0.0455 (11)0.0043 (10)0.0018 (9)0.0136 (10)
C140.0555 (12)0.0541 (12)0.0448 (11)0.0013 (9)0.0054 (9)0.0145 (9)
C150.0503 (11)0.0414 (10)0.0467 (10)0.0052 (8)0.0101 (8)0.0090 (8)
C160.0395 (9)0.0355 (9)0.0347 (9)0.0005 (7)0.0048 (7)0.0029 (7)
C170.0558 (12)0.0393 (10)0.0548 (11)0.0031 (9)0.0180 (9)0.0036 (9)
C180.0645 (13)0.0429 (11)0.0582 (12)0.0142 (10)0.0117 (10)0.0026 (9)
C190.0422 (11)0.0553 (12)0.0508 (11)0.0114 (9)0.0056 (8)0.0048 (9)
C200.0425 (11)0.0588 (13)0.0823 (15)0.0017 (10)0.0182 (10)0.0091 (11)
C210.0442 (11)0.0406 (10)0.0733 (14)0.0018 (8)0.0136 (9)0.0070 (9)
C220.0444 (10)0.0322 (9)0.0411 (9)0.0028 (7)0.0070 (7)0.0017 (7)
C230.0442 (11)0.0462 (11)0.0673 (13)0.0008 (8)0.0133 (9)0.0081 (9)
C240.0461 (12)0.0547 (12)0.0794 (15)0.0121 (10)0.0134 (10)0.0090 (11)
C250.0606 (13)0.0361 (10)0.0515 (11)0.0096 (9)0.0086 (9)0.0006 (8)
C260.0571 (12)0.0368 (10)0.0551 (12)0.0048 (9)0.0124 (9)0.0020 (8)
C270.0440 (10)0.0398 (10)0.0521 (11)0.0011 (8)0.0093 (8)0.0007 (8)
C280.103 (2)0.0432 (12)0.0852 (17)0.0004 (12)0.0012 (14)0.0173 (12)
Geometric parameters (Å, º) top
O1—C61.227 (2)C11—H11B0.9600
O2—C121.222 (2)C11—H11C0.9600
O3—N21.206 (13)C12—C131.500 (3)
O3'—N21.204 (16)C13—C141.514 (3)
O4—N21.225 (12)C13—H13A0.9700
O4'—N21.254 (11)C13—H13B0.9700
O5—C251.365 (2)C14—C151.513 (3)
O5—C281.417 (3)C14—H14A0.9700
N1—C11.396 (2)C14—H14B0.9700
N1—C51.405 (2)C15—H15A0.9700
N1—C221.451 (2)C15—H15B0.9700
N2—C191.470 (3)C16—C211.384 (2)
C1—C21.352 (2)C16—C171.389 (2)
C1—C91.502 (2)C17—C181.377 (3)
C2—C61.457 (2)C17—H170.9300
C2—C31.515 (2)C18—C191.368 (3)
C3—C41.502 (2)C18—H180.9300
C3—C161.524 (2)C19—C201.368 (3)
C3—H30.9800C20—C211.378 (3)
C4—C51.351 (2)C20—H200.9300
C4—C121.467 (2)C21—H210.9300
C5—C151.498 (2)C22—C271.373 (2)
C6—C71.505 (3)C22—C231.383 (3)
C7—C81.521 (3)C23—C241.379 (3)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—C251.381 (3)
C8—C101.530 (3)C24—H240.9300
C8—C91.532 (2)C25—C261.378 (3)
C8—C111.536 (3)C26—C271.384 (3)
C9—H9A0.9700C26—H260.9300
C9—H9B0.9700C27—H270.9300
C10—H10A0.9600C28—H28A0.9600
C10—H10B0.9600C28—H28B0.9600
C10—H10C0.9600C28—H28C0.9600
C11—H11A0.9600
C25—O5—C28117.82 (18)H11B—C11—H11C109.5
C1—N1—C5119.39 (14)O2—C12—C4120.70 (17)
C1—N1—C22119.93 (14)O2—C12—C13121.97 (17)
C5—N1—C22120.11 (13)C4—C12—C13117.33 (16)
O3'—N2—O314 (2)C12—C13—C14110.60 (16)
O3'—N2—O4118.0 (9)C12—C13—H13A109.5
O3—N2—O4119.3 (9)C14—C13—H13A109.5
O3'—N2—O4'127.3 (10)C12—C13—H13B109.5
O3—N2—O4'119.5 (10)C14—C13—H13B109.5
O4—N2—O4'33.8 (5)H13A—C13—H13B108.1
O3'—N2—C19116.8 (8)C15—C14—C13111.54 (16)
O3—N2—C19120.4 (7)C15—C14—H14A109.3
O4—N2—C19119.1 (6)C13—C14—H14A109.3
O4'—N2—C19115.1 (5)C15—C14—H14B109.3
C2—C1—N1120.08 (15)C13—C14—H14B109.3
C2—C1—C9122.55 (15)H14A—C14—H14B108.0
N1—C1—C9117.26 (14)C5—C15—C14112.17 (15)
C1—C2—C6120.29 (15)C5—C15—H15A109.2
C1—C2—C3120.91 (15)C14—C15—H15A109.2
C6—C2—C3118.78 (14)C5—C15—H15B109.2
C4—C3—C2108.41 (13)C14—C15—H15B109.2
C4—C3—C16113.33 (13)H15A—C15—H15B107.9
C2—C3—C16111.05 (13)C21—C16—C17117.90 (17)
C4—C3—H3108.0C21—C16—C3121.94 (15)
C2—C3—H3108.0C17—C16—C3120.16 (15)
C16—C3—H3108.0C18—C17—C16121.48 (18)
C5—C4—C12120.85 (16)C18—C17—H17119.3
C5—C4—C3121.65 (15)C16—C17—H17119.3
C12—C4—C3117.47 (15)C19—C18—C17118.61 (18)
C4—C5—N1119.80 (15)C19—C18—H18120.7
C4—C5—C15123.08 (16)C17—C18—H18120.7
N1—C5—C15117.10 (15)C18—C19—C20121.84 (18)
O1—C6—C2121.36 (16)C18—C19—N2119.24 (19)
O1—C6—C7120.58 (15)C20—C19—N2118.88 (19)
C2—C6—C7118.02 (15)C19—C20—C21118.90 (19)
C6—C7—C8113.60 (15)C19—C20—H20120.5
C6—C7—H7A108.8C21—C20—H20120.5
C8—C7—H7A108.8C20—C21—C16121.26 (18)
C6—C7—H7B108.8C20—C21—H21119.4
C8—C7—H7B108.8C16—C21—H21119.4
H7A—C7—H7B107.7C27—C22—C23119.85 (16)
C7—C8—C10110.37 (16)C27—C22—N1120.84 (16)
C7—C8—C9108.03 (15)C23—C22—N1119.31 (16)
C10—C8—C9110.56 (16)C24—C23—C22120.14 (18)
C7—C8—C11109.98 (16)C24—C23—H23119.9
C10—C8—C11109.21 (17)C22—C23—H23119.9
C9—C8—C11108.67 (15)C23—C24—C25119.99 (19)
C1—C9—C8113.50 (15)C23—C24—H24120.0
C1—C9—H9A108.9C25—C24—H24120.0
C8—C9—H9A108.9O5—C25—C26124.17 (18)
C1—C9—H9B108.9O5—C25—C24116.08 (18)
C8—C9—H9B108.9C26—C25—C24119.75 (17)
H9A—C9—H9B107.7C25—C26—C27120.16 (18)
C8—C10—H10A109.5C25—C26—H26119.9
C8—C10—H10B109.5C27—C26—H26119.9
H10A—C10—H10B109.5C22—C27—C26120.07 (17)
C8—C10—H10C109.5C22—C27—H27120.0
H10A—C10—H10C109.5C26—C27—H27120.0
H10B—C10—H10C109.5O5—C28—H28A109.5
C8—C11—H11A109.5O5—C28—H28B109.5
C8—C11—H11B109.5H28A—C28—H28B109.5
H11A—C11—H11B109.5O5—C28—H28C109.5
C8—C11—H11C109.5H28A—C28—H28C109.5
H11A—C11—H11C109.5H28B—C28—H28C109.5
C5—N1—C1—C214.8 (2)C4—C12—C13—C1437.0 (2)
C22—N1—C1—C2173.82 (15)C12—C13—C14—C1556.9 (2)
C5—N1—C1—C9161.57 (15)C4—C5—C15—C1416.8 (2)
C22—N1—C1—C99.8 (2)N1—C5—C15—C14164.75 (15)
N1—C1—C2—C6167.22 (15)C13—C14—C15—C546.8 (2)
C9—C1—C2—C68.9 (3)C4—C3—C16—C2121.4 (2)
N1—C1—C2—C311.2 (2)C2—C3—C16—C21100.90 (19)
C9—C1—C2—C3172.67 (15)C4—C3—C16—C17158.68 (16)
C1—C2—C3—C431.2 (2)C2—C3—C16—C1779.0 (2)
C6—C2—C3—C4147.19 (15)C21—C16—C17—C180.9 (3)
C1—C2—C3—C1693.89 (18)C3—C16—C17—C18179.21 (17)
C6—C2—C3—C1687.68 (17)C16—C17—C18—C190.0 (3)
C2—C3—C4—C529.3 (2)C17—C18—C19—C200.7 (3)
C16—C3—C4—C594.51 (18)C17—C18—C19—N2177.03 (19)
C2—C3—C4—C12152.76 (14)O3'—N2—C19—C1815.2 (12)
C16—C3—C4—C1283.47 (18)O3—N2—C19—C180.0 (12)
C12—C4—C5—N1174.83 (14)O4—N2—C19—C18167.1 (5)
C3—C4—C5—N17.3 (2)O4'—N2—C19—C18155.0 (5)
C12—C4—C5—C153.5 (3)O3'—N2—C19—C20162.6 (11)
C3—C4—C5—C15174.38 (15)O3—N2—C19—C20177.8 (11)
C1—N1—C5—C416.9 (2)O4—N2—C19—C2010.7 (6)
C22—N1—C5—C4171.72 (15)O4'—N2—C19—C2027.2 (5)
C1—N1—C5—C15161.57 (15)C18—C19—C20—C210.5 (3)
C22—N1—C5—C159.8 (2)N2—C19—C20—C21177.3 (2)
C1—C2—C6—O1174.22 (16)C19—C20—C21—C160.5 (3)
C3—C2—C6—O14.2 (2)C17—C16—C21—C201.1 (3)
C1—C2—C6—C73.5 (2)C3—C16—C21—C20178.99 (18)
C3—C2—C6—C7178.04 (15)C1—N1—C22—C2786.5 (2)
O1—C6—C7—C8152.72 (17)C5—N1—C22—C2784.8 (2)
C2—C6—C7—C829.5 (2)C1—N1—C22—C2393.5 (2)
C6—C7—C8—C1066.9 (2)C5—N1—C22—C2395.2 (2)
C6—C7—C8—C954.1 (2)C27—C22—C23—C241.1 (3)
C6—C7—C8—C11172.55 (16)N1—C22—C23—C24178.85 (18)
C2—C1—C9—C818.8 (2)C22—C23—C24—C250.5 (3)
N1—C1—C9—C8164.92 (15)C28—O5—C25—C2620.7 (3)
C7—C8—C9—C148.7 (2)C28—O5—C25—C24160.1 (2)
C10—C8—C9—C172.2 (2)C23—C24—C25—O5178.88 (19)
C11—C8—C9—C1168.00 (17)C23—C24—C25—C261.9 (3)
C5—C4—C12—O2173.30 (17)O5—C25—C26—C27179.16 (18)
C3—C4—C12—O24.7 (2)C24—C25—C26—C271.7 (3)
C5—C4—C12—C137.1 (2)C23—C22—C27—C261.4 (3)
C3—C4—C12—C13174.85 (15)N1—C22—C27—C26178.62 (16)
O2—C12—C13—C14143.43 (19)C25—C26—C27—C220.0 (3)

Experimental details

Crystal data
Chemical formulaC28H28N2O5
Mr472.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.463 (2), 12.104 (2), 16.408 (3)
β (°) 98.251 (5)
V3)2449.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.80 × 0.59 × 0.58
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.760, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
23202, 4466, 3901
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 1.17
No. of reflections4466
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: CrystalClear (Rigaku, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
O1—C61.227 (2)O2—C121.222 (2)
 

Footnotes

Contribution No. 20272019.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20272019)

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanesh, V. K., Banumathi, S., Velmurugan, D., Ramasubbu, N. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 633–635.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJang, H., Li, T., Tu, S. & Zou, X. (2005). Acta Cryst. E61, o2296–o2298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShanmugasundaram, P., Murugan, P., Ramakrishnan, V. T., Srividya, N. & Ramamurthy, P. (1996). Heteroatom. Chem. 6, 17.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, o1139–o1140.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds