metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m924-m925

2-Oxo-1,2-di­hydro­pyrimidin-3-ium di-μ-chlorido-bis­­{di­chloridobis[pyrimidin-2(1H)-one-κN3]cuprate(II)} dihydrate

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: guy.orpen@bristol.ac.uk

(Received 9 June 2008; accepted 10 June 2008; online 13 June 2008)

The asymmetric unit of the title compound, (C4H5N2O)2[Cu2Cl6(C4H4N2O)2]·2H2O, consists of one cation, one half of a centrosymmetric dianion and one water mol­ecule. The centrosymmetric dianion formed by dimerization in the crystal structure has neutral pyrimidin-2-one ligands coordinated to each copper(II) centre through Cu—N bonds. The Cu atoms each have a distorted trigonal bipyramidal geometry, with the N atom of the pyrimidin-2-one ligand in an axial position, and dimerize by sharing two equatorial Cl atoms. N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds connect the anions, cations and water mol­ecules, forming a three-dimensional network.

Related literature

The anion has an essentially similar coordination environment to that of the related compound [{(C5H5N)NH2}CuCl3]2 which has 3-amino­pyridinium cations (Blanchette & Willett, 1988[Blanchette, J. T. & Willett, R. D. (1988). Inorg. Chem. 27, 843-849.]) as the nitro­gen donors and is thus neutral, while the crystal structure of the cation was described by Furberg & Aas (1975[Furberg, S. & Aas, J. B. (1975). Acta Chem. Scand. A29, 713-716.]) as its chloride salt.

[Scheme 1]

Experimental

Crystal data
  • (C4H5N2O)2[Cu2Cl6(C4H4N2O)2]·2H2O

  • Mr = 762.22

  • Triclinic, [P \overline 1]

  • a = 7.5924 (4) Å

  • b = 8.6401 (3) Å

  • c = 10.6349 (4) Å

  • α = 96.032 (3)°

  • β = 100.508 (4)°

  • γ = 102.035 (4)°

  • V = 663.39 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 100 (2) K

  • 0.41 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.433, Tmax = 0.71

  • 14528 measured reflections

  • 3902 independent reflections

  • 3269 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 1.12

  • 3902 reflections

  • 180 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9989 (12)
Cu1—Cl3 2.2809 (4)
Cu1—Cl1 2.2830 (4)
Cu1—Cl2i 2.3942 (4)
Cu1—Cl2 2.6093 (4)
Symmetry code: (i) -x, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Cl1ii 0.86 2.56 3.4143 (14) 171
N3—H3A⋯O3iii 0.86 1.86 2.7099 (18) 168
N4—H2A⋯Cl2iv 0.86 2.30 3.1336 (14) 165
O3—H1⋯Cl1v 0.815 (16) 2.428 (17) 3.2258 (13) 166 (2)
O3—H2⋯Cl3vi 0.844 (17) 2.454 (18) 3.2653 (13) 162 (2)
Symmetry codes: (ii) x, y-1, z; (iii) x, y+1, z; (iv) x, y, z-1; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL).

Supporting information


Comment top

N—H···Cl interactions have been extensively used in crystal engineering to design and synthesize materials with desired structures. We sought to further utilize these interactions by reacting 2-hydroxypyrimidine hydrochloride and copper(II) chloride in a 2:1 ratio with the aim of synthesizing [C4H5N2O]2[CuCl4]. However, the title compound I was obtained, which crystallizes in the triclinic system with the P1 space group. The copper coordination centres are similar to those described by Blanchette and Willett (1988) in [{(C5H5N)NH2}CuCl3]2. The H2O molecules and the [C4H5N2O]+ cations (having both N atoms protonated and the O atoms atom deprotonated) are packed between the anions along the c-axis, the water forming O—H···Cl bridges between the anions while the cations form N—H···Cl and N—H···O bonds with the anions and water molecules respectively (Fig. 2).

For related literature, see Blanchette & Willett (1988) and Furberg & Aas (1975).

Related literature top

The anion has an essentially similar coordination environment to that of the related compound [{(C5H5N)NH2}CuCl3]2 which has 3-aminopyridinium cations (Blanchette & Willett, 1988) as the nitrogen donors and is thus neutral, while the crystal structure of the cation was described by Furberg & Aas (1975) as its chloride salt.

Experimental top

Copper(II) chloride dihydrate and 2-hydroxypyrimidine hydrochloride in a 1:2 molar ratio were dissolved in concentrated hydrochloric acid solution. The solution was left to evaporate slowly at room temperature and resulted in the formation of green crystals after a few days.

Refinement top

H atoms bonded to O atoms were located in the difference map and refined with distance restraints of O—H = 0.84 (2) Å with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2 times Ueq(C, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I showing one dimeric dianion, one cation and a molecule of water of crystallization, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing of I in the ac plane, with O—H···Cl bridges between the water molecules and the dianions, N—H···O hydrogen bonds between cations and water molecules, and N—H···Cl hydrogen bonds between the anions and cations.
2-Oxo-1,2-dihydropyrimidin-3-ium di-µ-chlorido-bis{dichloridobis[pyrimidin-2(1H)-one-κN3]cuprate(II)} dihydrate top
Crystal data top
(C4H5N2O)2[Cu2Cl6(C4H4N2O)2]·2H2OZ = 1
Mr = 762.22F(000) = 382
Triclinic, P1Dx = 1.908 Mg m3
a = 7.5924 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6401 (3) ÅCell parameters from 10481 reflections
c = 10.6349 (4) Åθ = 2.4–30.0°
α = 96.032 (3)°µ = 2.26 mm1
β = 100.508 (4)°T = 100 K
γ = 102.035 (4)°Block, green
V = 663.39 (5) Å30.41 × 0.18 × 0.16 mm
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
3902 independent reflections
Radiation source: fine-focus sealed tube3269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω (1° width) scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1010
Tmin = 0.433, Tmax = 0.71k = 1212
14528 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.0753P]
where P = (Fo2 + 2Fc2)/3
3902 reflections(Δ/σ)max = 0.002
180 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C4H5N2O)2[Cu2Cl6(C4H4N2O)2]·2H2Oγ = 102.035 (4)°
Mr = 762.22V = 663.39 (5) Å3
Triclinic, P1Z = 1
a = 7.5924 (4) ÅMo Kα radiation
b = 8.6401 (3) ŵ = 2.26 mm1
c = 10.6349 (4) ÅT = 100 K
α = 96.032 (3)°0.41 × 0.18 × 0.16 mm
β = 100.508 (4)°
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
3902 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3269 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.71Rint = 0.020
14528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.49 e Å3
3902 reflectionsΔρmin = 0.57 e Å3
180 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07237 (3)0.45037 (2)0.848449 (17)0.01007 (6)
Cl10.06435 (5)0.63425 (4)0.75599 (3)0.01291 (8)
Cl20.19396 (5)0.64570 (4)1.06611 (3)0.01065 (8)
Cl30.26769 (6)0.45986 (5)0.70847 (4)0.01557 (9)
N10.18231 (18)0.28152 (15)0.92487 (12)0.0099 (2)
N20.15847 (19)0.00585 (15)0.91842 (13)0.0122 (3)
H2B0.10200.09120.88650.015*
N30.69462 (19)0.93935 (16)0.46681 (12)0.0124 (3)
H3A0.78191.02370.47600.015*
N40.43187 (19)0.76169 (16)0.34665 (13)0.0137 (3)
H2A0.34880.72980.27680.016*
O10.58355 (18)0.96484 (15)0.25699 (12)0.0204 (3)
O20.02211 (17)0.10178 (14)0.76366 (11)0.0176 (2)
O30.93114 (18)0.22792 (15)0.49005 (12)0.0198 (3)
C10.0983 (2)0.12810 (17)0.86166 (15)0.0116 (3)
C20.3215 (2)0.30666 (18)1.02403 (14)0.0119 (3)
H2C0.37730.41161.06190.014*
C30.3900 (2)0.18275 (18)1.07546 (15)0.0132 (3)
H3B0.49170.20361.14360.016*
C40.3004 (2)0.03050 (18)1.02078 (15)0.0129 (3)
H4A0.33680.05601.05380.016*
C50.5717 (2)0.89360 (19)0.34849 (15)0.0135 (3)
C60.6850 (2)0.85959 (19)0.56744 (15)0.0134 (3)
H6A0.77440.89410.64330.016*
C70.5451 (2)0.72742 (19)0.56028 (15)0.0141 (3)
H7A0.53720.67180.63010.017*
C80.4167 (2)0.68029 (19)0.44567 (15)0.0139 (3)
H8A0.31940.59170.43730.017*
H10.947 (3)0.268 (3)0.4257 (19)0.037 (7)*
H21.024 (3)0.267 (3)0.551 (2)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01130 (11)0.00927 (9)0.00972 (10)0.00265 (7)0.00141 (7)0.00270 (7)
Cl10.01491 (19)0.01236 (16)0.01204 (17)0.00437 (13)0.00135 (14)0.00458 (12)
Cl20.01105 (17)0.00891 (15)0.01027 (16)0.00021 (13)0.00046 (13)0.00112 (12)
Cl30.01575 (19)0.01618 (18)0.01615 (18)0.00296 (14)0.00692 (14)0.00377 (14)
N10.0118 (6)0.0074 (5)0.0097 (6)0.0012 (5)0.0015 (5)0.0009 (4)
N20.0136 (7)0.0069 (5)0.0160 (6)0.0012 (5)0.0042 (5)0.0008 (5)
N30.0102 (6)0.0135 (6)0.0123 (6)0.0010 (5)0.0007 (5)0.0024 (5)
N40.0115 (6)0.0165 (6)0.0101 (6)0.0018 (5)0.0021 (5)0.0012 (5)
O10.0218 (7)0.0265 (6)0.0160 (6)0.0084 (5)0.0052 (5)0.0100 (5)
O20.0184 (6)0.0142 (5)0.0158 (5)0.0017 (5)0.0033 (5)0.0013 (4)
O30.0198 (7)0.0203 (6)0.0143 (6)0.0049 (5)0.0001 (5)0.0058 (5)
C10.0126 (7)0.0089 (6)0.0133 (7)0.0014 (5)0.0040 (6)0.0013 (5)
C20.0122 (7)0.0106 (7)0.0122 (7)0.0019 (6)0.0025 (6)0.0010 (5)
C30.0140 (8)0.0136 (7)0.0125 (7)0.0049 (6)0.0019 (6)0.0025 (5)
C40.0149 (8)0.0121 (7)0.0149 (7)0.0058 (6)0.0059 (6)0.0056 (6)
C50.0114 (8)0.0157 (7)0.0141 (7)0.0052 (6)0.0022 (6)0.0023 (6)
C60.0139 (8)0.0137 (7)0.0115 (7)0.0041 (6)0.0005 (6)0.0009 (5)
C70.0160 (8)0.0139 (7)0.0119 (7)0.0028 (6)0.0022 (6)0.0030 (5)
C80.0121 (8)0.0128 (7)0.0158 (7)0.0020 (6)0.0030 (6)0.0004 (6)
Geometric parameters (Å, º) top
Cu1—N11.9989 (12)N4—H2A0.8600
Cu1—Cl32.2809 (4)O1—C51.2119 (19)
Cu1—Cl12.2830 (4)O2—C11.221 (2)
Cu1—Cl2i2.3942 (4)O3—H10.815 (16)
Cu1—Cl22.6093 (4)O3—H20.844 (17)
Cl2—Cu1i2.3942 (4)C2—C31.403 (2)
N1—C21.314 (2)C2—H2C0.9300
N1—C11.3854 (19)C3—C41.361 (2)
N2—C41.349 (2)C3—H3B0.9300
N2—C11.3868 (19)C4—H4A0.9300
N2—H2B0.8600C6—C71.373 (2)
N3—C61.337 (2)C6—H6A0.9300
N3—C51.387 (2)C7—C81.378 (2)
N3—H3A0.8600C7—H7A0.9300
N4—C81.335 (2)C8—H8A0.9300
N4—C51.382 (2)
N1—Cu1—Cl388.53 (4)O2—C1—N1122.46 (14)
N1—Cu1—Cl1177.38 (4)O2—C1—N2122.11 (14)
Cl3—Cu1—Cl191.956 (15)N1—C1—N2115.42 (13)
N1—Cu1—Cl2i88.05 (4)N1—C2—C3123.13 (14)
Cl3—Cu1—Cl2i157.928 (16)N1—C2—H2C118.4
Cl1—Cu1—Cl2i90.538 (15)C3—C2—H2C118.4
N1—Cu1—Cl291.12 (4)C4—C3—C2116.78 (15)
Cl3—Cu1—Cl2115.984 (15)C4—C3—H3B121.6
Cl1—Cu1—Cl290.982 (14)C2—C3—H3B121.6
Cl2i—Cu1—Cl285.883 (14)N2—C4—C3119.63 (14)
Cu1i—Cl2—Cu194.117 (14)N2—C4—H4A120.2
C2—N1—C1120.92 (13)C3—C4—H4A120.2
C2—N1—Cu1125.69 (10)O1—C5—N4123.48 (15)
C1—N1—Cu1113.38 (10)O1—C5—N3123.19 (15)
C4—N2—C1123.75 (13)N4—C5—N3113.30 (13)
C4—N2—H2B118.1N3—C6—C7120.87 (15)
C1—N2—H2B118.1N3—C6—H6A119.6
C6—N3—C5123.65 (14)C7—C6—H6A119.6
C6—N3—H3A118.2C6—C7—C8117.45 (15)
C5—N3—H3A118.2C6—C7—H7A121.3
C8—N4—C5124.63 (14)C8—C7—H7A121.3
C8—N4—H2A117.7N4—C8—C7120.03 (15)
C5—N4—H2A117.7N4—C8—H8A120.0
H1—O3—H2109 (2)C7—C8—H8A120.0
N1—Cu1—Cl2—Cu1i87.97 (4)C4—N2—C1—N16.1 (2)
Cl3—Cu1—Cl2—Cu1i176.875 (16)C1—N1—C2—C32.4 (2)
Cl1—Cu1—Cl2—Cu1i90.469 (15)Cu1—N1—C2—C3178.41 (11)
Cl2i—Cu1—Cl2—Cu1i0.0N1—C2—C3—C42.5 (2)
Cl3—Cu1—N1—C292.08 (13)C1—N2—C4—C31.5 (2)
Cl2i—Cu1—N1—C2109.72 (13)C2—C3—C4—N22.9 (2)
Cl2—Cu1—N1—C223.88 (13)C8—N4—C5—O1179.35 (16)
Cl3—Cu1—N1—C187.19 (10)C8—N4—C5—N32.3 (2)
Cl2i—Cu1—N1—C171.00 (10)C6—N3—C5—O1178.50 (16)
Cl2—Cu1—N1—C1156.84 (10)C6—N3—C5—N43.2 (2)
C2—N1—C1—O2174.50 (15)C5—N3—C6—C72.4 (2)
Cu1—N1—C1—O24.8 (2)N3—C6—C7—C80.4 (2)
C2—N1—C1—N26.4 (2)C5—N4—C8—C70.7 (2)
Cu1—N1—C1—N2174.26 (10)C6—C7—C8—N40.4 (2)
C4—N2—C1—O2174.79 (15)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl1ii0.862.563.4143 (14)171
N3—H3A···O3iii0.861.862.7099 (18)168
N4—H2A···Cl2iv0.862.303.1336 (14)165
O3—H1···Cl1v0.82 (2)2.43 (2)3.2258 (13)166 (2)
O3—H2···Cl3vi0.84 (2)2.45 (2)3.2653 (13)162 (2)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C4H5N2O)2[Cu2Cl6(C4H4N2O)2]·2H2O
Mr762.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5924 (4), 8.6401 (3), 10.6349 (4)
α, β, γ (°)96.032 (3), 100.508 (4), 102.035 (4)
V3)663.39 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.41 × 0.18 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini-R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.433, 0.71
No. of measured, independent and
observed [I > 2σ(I)] reflections
14528, 3902, 3269
Rint0.020
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.12
No. of reflections3902
No. of parameters180
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.57

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.9989 (12)Cu1—Cl2i2.3942 (4)
Cu1—Cl32.2809 (4)Cu1—Cl22.6093 (4)
Cu1—Cl12.2830 (4)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl1ii0.862.563.4143 (14)170.8
N3—H3A···O3iii0.861.862.7099 (18)168.1
N4—H2A···Cl2iv0.862.303.1336 (14)164.7
O3—H1···Cl1v0.815 (16)2.428 (17)3.2258 (13)166 (2)
O3—H2···Cl3vi0.844 (17)2.454 (18)3.2653 (13)162 (2)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y, z1; (v) x+1, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

MAK thanks Bayero University, Kano, Nigeria, for funding. Oxford Diffraction Ltd are thanked for the loan of an Oxford Gemini R Ultra diffractometer to the University of Bristol.

References

First citationBlanchette, J. T. & Willett, R. D. (1988). Inorg. Chem. 27, 843–849.  CSD CrossRef CAS Web of Science Google Scholar
First citationFurberg, S. & Aas, J. B. (1975). Acta Chem. Scand. A29, 713–716.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m924-m925
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds