organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-6-(3-methyl­piperidin-1-yl)-1,3,5-triazine

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 8 April 2008; accepted 5 May 2008; online 21 June 2008)

In the title compound, C9H12Cl2N4, the piperidine ring adopts a chair conformation. The electron delocalization of the molecule is indicated by the similar C⋯N distances within the triazine ring and by the double-bond character of the C=N triazine–piperidine connectivity. Weak intra­molecular C—H⋯N hydrogen bonds link the two rings within the mol­ecule, which exhibits a pseudo-mirror plane if the methyl group is ignored. ππ Inter­actions between pairs of triazine rings with stacking distances of 3.521 (7) Å are observed in the crystal structure, generated via crystallographic inversion centers.

Related literature

For general background and the experimental method, see: Sandford (2003[Sandford, G. (2003). Chem. Eur. J. 9, 1464-1469.]); Masllorens et al. (2004[Masllorens, J., Roglans, A., Moreno-Mañas, M. & Parella, T. (2004). Organometallics, 23, 2533-2540.]); Ciunik (1997[Ciunik, Z. (1997). J. Mol. Struct. 436-437, 173-179.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]); Thalladi et al. (1998[Thalladi, V. R., Brasselet, S., Weiss, H.-C., Bläser, D., Katz, A. K., Carrell, H. L., Boese, R., Zyss, J., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 2563-2577.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12Cl2N4

  • Mr = 247.13

  • Monoclinic, P 21 /c

  • a = 8.086 (16) Å

  • b = 19.19 (3) Å

  • c = 7.813 (15) Å

  • β = 106.18 (3)°

  • V = 1164 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.750, Tmax = 1.000 (expected range = 0.692–0.923)

  • 11851 measured reflections

  • 2765 independent reflections

  • 1118 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.189

  • S = 0.86

  • 2765 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯N4 0.97 2.34 2.787 (6) 108
C9—H9B⋯N2 0.97 2.35 2.794 (6) 107

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4,6-Trichloro-1,3,5-triazine is an interesting building block since it shows an unusual ability of replacement of the chlorine atoms by nucleophiles. It is often used for the construction of an array of novel complex derivatives and of a variety of structurally diverse macrocycles by sequential nucleophilic aromatic substitution processes (Sandford, 2003; Masllorens et al., 2004). Besides, it can also be used to construct a target supramolecular network. A series of substituted triazine compounds stabilized by weak intermolecular interactions such as C—H···N hydrogen bonding and π···π interaction were reported before (Thalladi et al., 1998). Crystallographic evidence for the existence of C—H···N hydrogen bonds with H···N ranges between 2.52 and 2.72 Å was communicated by Taylor & Kennard (1982).

In the title compound, C9H12Cl2N4, the methylpiperidine group adopts a chair conformation and the chiral C6 atom is in S* configuration (Figure 1). If the methyl group at the piperidine group is replaced by a hydrogen atom, the molecule is nearly mirror symmetrical. The crystal data shows that the N—C bond lengths of N1—C7, N3—C4 and N3—C8 are 1.330 (5), 1.344 (5) and 1.340 (5) Å respectively. These relative homogeneous bond distances indicate the inflexibility of the molecule. Though no classic hydrogen bond is found, there is evidence of weak C—H···N interactions in the molecule (Table 1). In contrast to these inflexible intramolecular C—H···N hydrogen bonds, an example of intramolecular C—H···N hydrogen bond interactions showed a stabilizing effect in the conformation of flexible pyranoid rings (Ciunik, 1997).

Fig. 2 shows the packing diagram and the stacking between pairs of pyrazine rings. The stacking distance between the ring centroids Cg···Cgi is 3.521 (7) Å, indicating quite strong π···π interactions between the symmetry-related molecules (symmetry code: -x, 1 - y,1 - z). This face to face π···π interaction plays a very important function in stabilizing the crystal structure (Hunter & Sanders, 1990).

Related literature top

For general background and the experimental method, see: Sandford (2003); Masllorens et al. (2004); Ciunik (1997); Hunter & Sanders (1990); Taylor & Kennard (1982); Thalladi et al. (1998).

Experimental top

2,4,6-Trichloro-1,3,5-triazine (1.84 g, 10 mmol) and 3-methylpiperidine (0.99 g, 10 mmol) were dissolved in the mixture of acetone (25 ml) and H2O (5 ml) in the presence of KOH (0.56 g, 10 mmol) and refluxed for 24 h. The conversion of reaction was monitored by TLC. After the mixture was cooled to room temperature, the solution was filtered and rotated in vacuum. A white solid was obtained after purification by column chromatography on silica gel (n-18 hexane). Colorless crystals suitable for single-crystal X-ray diffraction studies were obtained by slow evaporation of a solution in ethanol at room temperature over several days.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the a axis.
2,4-Dichloro-6-(3-methylpiperidin-1-yl)-1,3,5-triazine top
Crystal data top
C9H12Cl2N4F(000) = 512
Mr = 247.13Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2183 reflections
a = 8.086 (16) Åθ = 3.4–27.4°
b = 19.19 (3) ŵ = 0.53 mm1
c = 7.813 (15) ÅT = 293 K
β = 106.18 (3)°Block, colorless
V = 1164 (4) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2765 independent reflections
Radiation source: fine-focus sealed tube1118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.6°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2525
Tmin = 0.750, Tmax = 1.000l = 1010
11851 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H12Cl2N4V = 1164 (4) Å3
Mr = 247.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.086 (16) ŵ = 0.53 mm1
b = 19.19 (3) ÅT = 293 K
c = 7.813 (15) Å0.40 × 0.20 × 0.15 mm
β = 106.18 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2765 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1118 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.068
11851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 0.86Δρmax = 0.35 e Å3
2765 reflectionsΔρmin = 0.27 e Å3
136 parameters
Special details top

Experimental. The relative large standard uncertainties (s. u.) noted in Alert level B of PLATON may be explained by measurement at room temperature and weak diffraction power of the crystal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.33512 (12)0.54293 (6)0.33576 (14)0.0794 (4)
Cl10.24201 (14)0.64892 (6)0.38583 (16)0.0890 (4)
N40.2234 (3)0.52641 (15)0.2549 (4)0.0597 (8)
N30.0402 (4)0.59106 (15)0.3557 (4)0.0641 (8)
N20.0437 (4)0.47725 (15)0.2313 (4)0.0615 (8)
C90.1242 (5)0.35428 (19)0.0892 (6)0.0774 (12)
H9A0.16440.34670.03850.093*
H9B0.00100.36270.12100.093*
C80.1142 (4)0.53582 (19)0.3024 (4)0.0598 (9)
N10.2137 (4)0.41552 (15)0.1395 (4)0.0682 (9)
C70.1306 (4)0.47334 (18)0.2081 (5)0.0574 (9)
C60.4391 (5)0.34335 (18)0.2078 (5)0.0681 (10)
H6A0.39000.35130.33590.082*
C50.4023 (4)0.4065 (2)0.1093 (6)0.0711 (11)
H5A0.45750.40120.01720.085*
H5B0.44960.44770.15020.085*
C40.1300 (5)0.58034 (19)0.3233 (5)0.0600 (9)
C30.3548 (5)0.27924 (19)0.1560 (5)0.0720 (11)
H3A0.37350.23970.22570.086*
H3B0.40740.26880.03120.086*
C20.1620 (5)0.2904 (2)0.1872 (6)0.0826 (12)
H2A0.10780.29580.31390.099*
H2B0.11270.24960.14700.099*
C10.6342 (6)0.3354 (2)0.1702 (7)0.0919 (14)
H1A0.68140.37690.20650.138*
H1B0.65900.29620.23560.138*
H1C0.68460.32790.04500.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0528 (6)0.0896 (8)0.0908 (8)0.0078 (5)0.0118 (5)0.0008 (6)
Cl10.0794 (8)0.0676 (7)0.1162 (10)0.0117 (5)0.0206 (7)0.0158 (6)
N40.0487 (16)0.0527 (17)0.075 (2)0.0032 (14)0.0119 (15)0.0052 (15)
N30.0560 (19)0.0611 (19)0.072 (2)0.0043 (15)0.0119 (15)0.0010 (15)
N20.0494 (16)0.0615 (18)0.0692 (19)0.0032 (14)0.0092 (14)0.0042 (15)
C90.064 (2)0.063 (2)0.102 (3)0.004 (2)0.018 (2)0.014 (2)
C80.0500 (19)0.067 (2)0.056 (2)0.0029 (18)0.0052 (17)0.0127 (18)
N10.0432 (16)0.0593 (19)0.100 (2)0.0032 (14)0.0157 (16)0.0056 (17)
C70.0513 (19)0.053 (2)0.064 (2)0.0009 (17)0.0095 (17)0.0117 (17)
C60.074 (3)0.060 (2)0.070 (2)0.0073 (19)0.018 (2)0.0074 (19)
C50.052 (2)0.062 (2)0.094 (3)0.0047 (18)0.012 (2)0.002 (2)
C40.062 (2)0.056 (2)0.059 (2)0.0055 (18)0.0129 (18)0.0089 (17)
C30.090 (3)0.054 (2)0.070 (3)0.002 (2)0.019 (2)0.0021 (18)
C20.085 (3)0.066 (3)0.092 (3)0.015 (2)0.018 (2)0.001 (2)
C10.077 (3)0.081 (3)0.125 (4)0.012 (2)0.041 (3)0.010 (3)
Geometric parameters (Å, º) top
Cl2—C81.737 (5)C6—C51.510 (5)
Cl1—C41.743 (4)C6—C11.529 (6)
N4—C41.305 (5)C6—C31.516 (5)
N4—C71.373 (4)C6—H6A0.9800
N3—C81.340 (5)C5—H5A0.9700
N3—C41.344 (5)C5—H5B0.9700
N2—C81.312 (5)C3—C21.524 (6)
N2—C71.372 (5)C3—H3A0.9700
C9—C21.521 (6)C3—H3B0.9700
C9—N11.489 (5)C2—H2A0.9700
C9—H9A0.9700C2—H2B0.9700
C9—H9B0.9700C1—H1A0.9600
N1—C71.330 (5)C1—H1B0.9600
N1—C51.487 (5)C1—H1C0.9600
C4—N4—C7113.6 (3)C6—C5—H5A109.5
C8—N3—C4110.1 (3)N1—C5—H5B109.5
C8—N2—C7114.3 (3)C6—C5—H5B109.5
C2—C9—N1108.8 (3)H5A—C5—H5B108.1
C2—C9—H9A109.9N4—C4—N3130.1 (3)
N1—C9—H9A109.9N4—C4—Cl1115.3 (3)
C2—C9—H9B109.9N3—C4—Cl1114.6 (3)
N1—C9—H9B109.9C2—C3—C6111.1 (3)
H9A—C9—H9B108.3C2—C3—H3A109.4
N2—C8—N3129.1 (3)C6—C3—H3A109.4
N2—C8—Cl2116.0 (3)C2—C3—H3B109.4
N3—C8—Cl2114.9 (3)C6—C3—H3B109.4
C7—N1—C5122.8 (3)H3A—C3—H3B108.0
C7—N1—C9122.5 (3)C9—C2—C3111.9 (3)
C5—N1—C9114.8 (3)C9—C2—H2A109.2
N1—C7—N2118.9 (3)C3—C2—H2A109.2
N1—C7—N4118.3 (3)C9—C2—H2B109.2
N2—C7—N4122.8 (3)C3—C2—H2B109.2
C5—C6—C1108.8 (3)H2A—C2—H2B107.9
C5—C6—C3110.4 (3)C6—C1—H1A109.5
C1—C6—C3112.6 (3)C6—C1—H1B109.5
C5—C6—H6A108.3H1A—C1—H1B109.5
C1—C6—H6A108.3C6—C1—H1C109.5
C3—C6—H6A108.3H1A—C1—H1C109.5
N1—C5—C6110.6 (3)H1B—C1—H1C109.5
N1—C5—H5A109.5
C7—N2—C8—N30.6 (5)C4—N4—C7—N20.1 (5)
C7—N2—C8—Cl2179.6 (2)C7—N1—C5—C6122.5 (4)
C4—N3—C8—N21.3 (5)C9—N1—C5—C656.7 (4)
C4—N3—C8—Cl2179.7 (2)C1—C6—C5—N1178.9 (3)
C2—C9—N1—C7124.0 (4)C3—C6—C5—N154.9 (4)
C2—C9—N1—C555.2 (4)C7—N4—C4—N30.8 (5)
C5—N1—C7—N2179.9 (3)C7—N4—C4—Cl1179.7 (2)
C9—N1—C7—N20.9 (5)C8—N3—C4—N41.4 (5)
C5—N1—C7—N40.8 (5)C8—N3—C4—Cl1179.7 (2)
C9—N1—C7—N4178.3 (3)C5—C6—C3—C255.6 (4)
C8—N2—C7—N1179.0 (3)C1—C6—C3—C2177.3 (3)
C8—N2—C7—N40.2 (5)N1—C9—C2—C353.9 (4)
C4—N4—C7—N1179.0 (3)C6—C3—C2—C955.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N40.972.342.787 (6)108
C9—H9B···N20.972.352.794 (6)107

Experimental details

Crystal data
Chemical formulaC9H12Cl2N4
Mr247.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.086 (16), 19.19 (3), 7.813 (15)
β (°) 106.18 (3)
V3)1164 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11851, 2765, 1118
Rint0.068
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.189, 0.86
No. of reflections2765
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···N40.972.342.787 (6)107.5
C9—H9B···N20.972.352.794 (6)106.9
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

References

First citationCiunik, Z. (1997). J. Mol. Struct. 436–437, 173–179.  CrossRef CAS Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationMasllorens, J., Roglans, A., Moreno-Mañas, M. & Parella, T. (2004). Organometallics, 23, 2533–2540.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSandford, G. (2003). Chem. Eur. J. 9, 1464–1469.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CrossRef CAS Web of Science Google Scholar
First citationThalladi, V. R., Brasselet, S., Weiss, H.-C., Bläser, D., Katz, A. K., Carrell, H. L., Boese, R., Zyss, J., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 2563–2577.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds