metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m958-m959

Hexa-μ2-bromido-μ4-oxo-tetra­kis[(nicotine)copper(II)]

aKey Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and bDepartment of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: lulude17@yahoo.com.cn

(Received 9 May 2008; accepted 18 June 2008; online 25 June 2008)

In the title compound, hexa-μ2-bromido-μ4-oxo-tetra­kis{[3-(1-methyl-2-pyrrolidin­yl)pyridine-κN]copper(II)}, [Cu4Br6O(C10H14N2)4], the four Cu atoms are tetra­hedrally arranged around the O atom at the cluster center. The Cu and coordinated N atoms lie along directions which correspond to four of the eight threefold axial directions of a regular octa­hedron. Each Cu atom lies at the center of a trigonal bipyramid, with the O atom and the pyridine N atom of a nicotine ligand in the axial positions and three Br atoms in the equatorial positions. Average bond distances are: Cu—N = 1.979 (8), Cu—O = 1.931 (6), Cu—Br = 2.514 (14) and Cu⋯Cu = 3.154 (6) ÅÅ. The configuration of the nicotine ligands is that of the trans diastereomer. In addition, the crystal structure contains five intra­molecular C—H⋯Br hydrogen bonds, which determine (or support) the orientation of the nicotine mol­ecules relative to their three equatorial Br atoms. One of the nicotine mol­ecules has two C—H⋯Br contacts, while the other three nicotine mol­ecules show only one C—H⋯Br bond each. Two other inter­molecular C—H⋯Br hydrogen bonds connect the complex mol­ecules, forming ribbons which extend in the b- and c-axis directions.

Related literature

For related literature, see: Udupa & Krebs (1980[Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161-164.]); Meyer et al. (2006[Meyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34-35.]); Haendler (1990[Haendler, H. M. (1990). Acta Cryst. C46, 2054-2057.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Br6O(C10H14N2)4]

  • Mr = 1398.55

  • Monoclinic, P 21

  • a = 12.9505 (5) Å

  • b = 13.2850 (3) Å

  • c = 14.2555 (2) Å

  • β = 92.221 (2)°

  • V = 2450.78 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.64 mm−1

  • T = 123 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.29, Tmax = 0.40

  • 22605 measured reflections

  • 9345 independent reflections

  • 8124 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.122

  • S = 1.08

  • 9345 reflections

  • 536 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4309 Friedel pairs

  • Flack parameter: 0.058 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br3 0.95 2.60 3.292 (9) 130
C15—H15A⋯Br4 0.95 2.71 3.362 (10) 126
C21—H21A⋯Br2 0.95 2.77 3.372 (10) 122
C25—H25A⋯Br6 0.95 2.75 3.332 (9) 120
C30—H30C⋯Br6i 0.98 2.92 3.844 (10) 158
C35—H35A⋯Br5 0.95 2.68 3.259 (10) 120
C39—H39B⋯Br5ii 0.99 2.88 3.764 (11) 150
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Numerous clusters of nicotine [3-(1-methyl-2- pyrrolidinyl)pyridine] were reported to form molecular complexes with metals. But the crystal structures of the clusters containing both nicotine ligands and bromine atoms have not been reported so far. In order to explore the chemistry of nicotine clusters extensively, we synthesized the title cluster.

As illustrated in Fig. 1, the title compound has an O atom at the center of a tetrahedron of Cu atoms. The same O atom also lies at the center of a slightly distorted octahedron of Br atoms. This octahedron is in turn surrounded tetrahedrally by the four pyridine N atoms of the nicotine ligands, in parallel orientation with the Cu tetrahedron. The Cu atoms are bridged by the six Br atoms. The net effect is to place each Cu atom at the center of a slightly distorted trigonal bipyramid; the four bipyramids have six edges in common. The central O atom and the pyridine N atoms are in the axial positions, while the bridging Br atoms are in the equatorial positions. In addition, the absolut configurations of C6, C16, C26, and C36 can be given as S* (the * denotes unknown absolute configuration, but for the chosen coordinates the form appears to be S). The structure also contains five intramolecular and two intermolecular C—H···Br hydrogen bonds (Table 1). The intramolecular hydrogen bonds determine (or support) the orientation of the nicotine molecules relative to their equatorial three Br atoms. One of the nicotine molecules has two C—H···Br contacts: C21—H21A···Br2 and C25—H25A···Br6, the other three nicotine molecules show only one H bond. Two other intermolecular hydrogen bonds, C30—H30C···Br6 and C39—H39B···Br5, connect the complexes to form ribbons which extend in the b and c direction.

Examples of closely related compounds containing nicotine ligands include a mercury(II) chain polymer (Udupa & Krebs, 1980), a helical silver(I) coordination polymer (Meyer et al., 2006) and a chloride-nicotine copper(II) complex (Haendler, 1990).

Related literature top

For related literature, see: Udupa & Krebs, (1980); Meyer et al., (2006); Haendler, (1990).

Experimental top

CuBr (1 mmol) was added to a solution of 4-cyanopyridine(1 mmol) in dmf (5 ml). The resulting mixture was stirred for about 10 min after which an orange precipitate formed. Nicotine (1 ml) was then added dropwise to the reaction mixture and stirring was continued, during which time the precipitate was dissolved, giving an orange solution.This solution then changed its colour to dark green with 30 min further stirring. The resulting solution was filtered and the dark green filtrate was transfered into a test tube and carefully laid on the surface of the filtrate with i-PrOH (10 ml). Dark-brown block crystals were obtained after 30 days. Yield: 0.158 g, 68% (based on CuBr used). Analysis: Found: C 34.52, H 3.90, N 7.90%; Calculated for C40H56Br6Cu4N8O: C 34.35, H 4.04, N 8.01%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The Flack parameter used in the refinement is 0.058 (15) with 4309 Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
hexa-µ2-bromido-µ4-oxo-tetrakis{[3-(1-methyl-2-pyrrolidinyl)pyridine-κN]copper(II)} top
Crystal data top
[Cu4Br6O(C10H14N2)4]F(000) = 1372
Mr = 1398.55Dx = 1.895 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8714 reflections
a = 12.9505 (5) Åθ = 2.1–26.4°
b = 13.2850 (3) ŵ = 6.64 mm1
c = 14.2555 (2) ÅT = 123 K
β = 92.221 (2)°Block, dark brown
V = 2450.78 (11) Å30.20 × 0.16 × 0.14 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
9345 independent reflections
Radiation source: sealed tube8124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.29, Tmax = 0.40k = 1616
22605 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
9345 reflectionsΔρmax = 0.64 e Å3
536 parametersΔρmin = 0.82 e Å3
1 restraintAbsolute structure: Flack (1983), 4309 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.058 (15)
Crystal data top
[Cu4Br6O(C10H14N2)4]V = 2450.78 (11) Å3
Mr = 1398.55Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.9505 (5) ŵ = 6.64 mm1
b = 13.2850 (3) ÅT = 123 K
c = 14.2555 (2) Å0.20 × 0.16 × 0.14 mm
β = 92.221 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
8124 reflections with I > 2σ(I)
Tmin = 0.29, Tmax = 0.40Rint = 0.044
22605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.64 e Å3
S = 1.08Δρmin = 0.82 e Å3
9345 reflectionsAbsolute structure: Flack (1983), 4309 Friedel pairs
536 parametersAbsolute structure parameter: 0.058 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28823 (7)0.58585 (6)0.76809 (6)0.02612 (19)
Br20.01897 (6)0.79441 (7)0.75355 (6)0.0291 (2)
Br30.25573 (7)0.84149 (7)0.95621 (6)0.0305 (2)
Br40.22450 (7)0.78513 (7)0.52996 (6)0.02774 (19)
Br50.48949 (6)0.84084 (7)0.72986 (6)0.03022 (19)
Br60.23762 (7)1.04233 (7)0.72339 (7)0.0336 (2)
C10.1183 (7)0.6417 (7)1.0069 (5)0.0247 (18)
H1A0.15830.69471.03440.030*
C20.0695 (7)0.5719 (8)1.0658 (7)0.033 (2)
C30.0037 (10)0.5038 (8)1.0229 (8)0.051 (3)
H3A0.04800.46541.06060.061*
C40.0096 (8)0.4941 (9)0.9250 (8)0.048 (3)
H4A0.04920.44170.89600.057*
C50.0429 (7)0.5616 (7)0.8717 (7)0.030 (2)
H5A0.03410.55900.80530.036*
C60.0778 (8)0.5910 (8)1.1674 (7)0.041 (2)
H6A0.04880.53151.20040.049*
C70.1780 (8)0.6407 (9)1.2997 (7)0.041 (2)
H7A0.17090.58401.34410.049*
H7B0.23910.68151.31910.049*
C80.0844 (7)0.7018 (7)1.2933 (6)0.031 (2)
H8A0.10320.77391.29860.038*
H8B0.04000.68501.34610.038*
C90.0258 (9)0.6846 (9)1.2030 (8)0.046 (3)
H9A0.03320.74191.15940.055*
H9B0.04850.67281.21300.055*
C100.2290 (8)0.5007 (8)1.2051 (7)0.038 (2)
H10A0.19010.45981.24870.057*
H10B0.30150.50431.22720.057*
H10C0.22470.47011.14250.057*
C110.5028 (7)0.5877 (8)0.6410 (6)0.035 (2)
H11A0.50970.59430.70730.042*
C120.5629 (8)0.5209 (7)0.5960 (7)0.036 (2)
C130.5644 (7)0.5044 (8)0.4954 (7)0.034 (2)
H13A0.60710.45650.46620.041*
C140.4928 (8)0.5699 (9)0.4459 (7)0.047 (3)
H14A0.48520.56750.37940.056*
C150.4327 (8)0.6395 (9)0.4991 (7)0.043 (3)
H15A0.38950.68530.46470.052*
C160.6298 (7)0.4506 (8)0.6531 (7)0.036 (2)
H16A0.67400.41200.60970.044*
C170.7272 (11)0.4266 (9)0.7973 (8)0.053 (3)
H17A0.75110.46120.85570.063*
H17B0.78240.38110.77660.063*
C180.6280 (9)0.3701 (8)0.8109 (7)0.046 (3)
H18A0.58750.40300.85980.056*
H18B0.64280.29990.83050.056*
C190.5671 (9)0.3718 (8)0.7151 (8)0.048 (3)
H19A0.49510.39460.72270.058*
H19B0.56600.30420.68580.058*
C200.7870 (8)0.5561 (10)0.6860 (9)0.053 (3)
H20A0.80670.52640.62640.080*
H20B0.84510.55130.73190.080*
H20C0.76870.62700.67620.080*
C210.0384 (8)0.9135 (10)0.5492 (8)0.048 (3)
H21A0.05470.85000.57570.057*
C220.1084 (9)0.9577 (10)0.4939 (7)0.045 (3)
C230.0812 (7)1.0480 (8)0.4511 (7)0.035 (2)
H23A0.12741.07820.40600.042*
C240.0026 (8)1.0890 (9)0.4715 (7)0.045 (3)
H24A0.01721.15210.44350.054*
C250.0777 (7)1.0463 (8)0.5346 (6)0.033 (2)
H25A0.14061.07960.55150.039*
C260.2124 (9)0.9171 (8)0.4718 (7)0.048 (3)
H26A0.25320.96360.42940.058*
C270.2737 (10)0.8910 (10)0.5626 (9)0.057 (3)
H27A0.31460.94890.58440.068*
H27B0.22750.86620.61450.068*
C280.3466 (7)0.8022 (8)0.5179 (7)0.036 (2)
H28A0.34590.74390.56120.043*
H28B0.41860.82680.51070.043*
C290.3103 (8)0.7697 (9)0.4250 (8)0.043 (2)
H29A0.35400.79850.37320.051*
H29B0.31040.69540.41940.051*
C300.1700 (9)0.8187 (8)0.3300 (8)0.047 (3)
H30A0.09990.84600.32630.070*
H30B0.21880.86300.29570.070*
H30C0.17260.75130.30200.070*
C310.3732 (8)1.0704 (7)0.9282 (8)0.039 (2)
H31A0.30011.06590.92900.047*
C320.4159 (9)1.1595 (8)0.9843 (8)0.044 (3)
C330.5149 (8)1.1545 (8)0.9841 (8)0.045 (3)
H330.55171.19551.02860.054*
C340.5729 (7)1.0972 (10)0.9273 (7)0.045 (3)
H34A0.64231.11530.91640.054*
C350.5316 (9)1.0155 (9)0.8872 (9)0.052 (3)
H35A0.57290.96440.86100.063*
C360.3478 (8)1.2254 (9)1.0366 (7)0.041 (2)
H36A0.38571.29001.04850.049*
C370.1705 (8)1.2749 (8)1.0538 (6)0.038 (2)
H37A0.10511.23961.03670.045*
H37B0.15791.34831.05530.045*
C380.2208 (9)1.2342 (9)1.1539 (7)0.046 (3)
H38A0.23441.29081.19780.055*
H38B0.17401.18561.18340.055*
C390.3163 (9)1.1860 (9)1.1298 (9)0.051 (3)
H39A0.30651.11211.12630.061*
H39B0.37091.20051.17840.061*
C400.2600 (8)1.3053 (9)0.9133 (7)0.042 (2)
H40A0.31361.27420.87630.062*
H40B0.28051.37410.93010.062*
H40C0.19471.30680.87620.062*
Cu10.18408 (8)0.72680 (8)0.82869 (7)0.0265 (2)
Cu20.34250 (8)0.73347 (8)0.66603 (7)0.0249 (2)
Cu30.15501 (8)0.88478 (8)0.66313 (7)0.0257 (2)
Cu40.33722 (8)0.90983 (8)0.81346 (7)0.0276 (2)
N10.1092 (6)0.6345 (6)0.9127 (5)0.0299 (16)
N20.1845 (8)0.6041 (8)1.2003 (7)0.052 (2)
N30.4330 (6)0.6449 (7)0.5918 (5)0.0346 (19)
N40.6961 (7)0.5007 (7)0.7219 (6)0.039 (2)
N50.0533 (6)0.9531 (7)0.5697 (5)0.0324 (18)
N60.1965 (6)0.8129 (7)0.4240 (6)0.038 (2)
N70.4085 (7)1.0081 (6)0.8855 (6)0.038 (2)
N80.2476 (7)1.2506 (8)0.9930 (6)0.046 (2)
O10.2551 (5)0.8122 (5)0.7435 (4)0.0287 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0274 (4)0.0272 (4)0.0235 (4)0.0058 (3)0.0023 (3)0.0028 (3)
Br20.0265 (4)0.0342 (5)0.0260 (4)0.0033 (4)0.0049 (3)0.0022 (4)
Br30.0380 (5)0.0280 (4)0.0250 (4)0.0050 (4)0.0059 (3)0.0036 (4)
Br40.0294 (4)0.0312 (4)0.0222 (4)0.0008 (4)0.0041 (3)0.0007 (4)
Br50.0246 (4)0.0349 (5)0.0309 (4)0.0007 (4)0.0019 (3)0.0025 (4)
Br60.0358 (5)0.0292 (5)0.0346 (5)0.0034 (4)0.0126 (4)0.0033 (4)
C10.034 (5)0.028 (4)0.012 (3)0.002 (4)0.008 (3)0.008 (3)
C20.024 (4)0.039 (6)0.036 (5)0.003 (4)0.005 (4)0.012 (4)
C30.077 (8)0.030 (5)0.047 (6)0.012 (6)0.011 (6)0.022 (5)
C40.035 (6)0.051 (7)0.058 (7)0.016 (5)0.008 (5)0.011 (6)
C50.024 (4)0.032 (5)0.036 (5)0.008 (4)0.018 (4)0.018 (4)
C60.052 (6)0.041 (6)0.031 (5)0.018 (5)0.013 (4)0.008 (4)
C70.047 (6)0.045 (6)0.030 (5)0.010 (5)0.005 (4)0.000 (4)
C80.035 (5)0.030 (5)0.030 (4)0.013 (4)0.004 (4)0.004 (4)
C90.042 (6)0.054 (7)0.040 (5)0.012 (5)0.006 (5)0.005 (5)
C100.031 (5)0.045 (6)0.038 (5)0.021 (4)0.007 (4)0.001 (4)
C110.027 (4)0.061 (7)0.016 (4)0.005 (5)0.006 (3)0.009 (4)
C120.036 (5)0.032 (5)0.040 (5)0.012 (4)0.013 (4)0.004 (4)
C130.022 (4)0.037 (5)0.044 (6)0.002 (4)0.005 (4)0.012 (4)
C140.048 (6)0.056 (7)0.036 (5)0.020 (5)0.008 (5)0.013 (5)
C150.033 (5)0.060 (7)0.036 (5)0.014 (5)0.005 (4)0.011 (5)
C160.033 (5)0.035 (5)0.039 (5)0.019 (4)0.010 (4)0.013 (4)
C170.082 (9)0.038 (6)0.036 (5)0.006 (6)0.008 (6)0.024 (5)
C180.068 (7)0.036 (6)0.034 (5)0.029 (5)0.004 (5)0.007 (4)
C190.044 (6)0.037 (6)0.062 (7)0.001 (5)0.010 (5)0.008 (5)
C200.036 (6)0.065 (8)0.060 (7)0.014 (6)0.017 (5)0.043 (6)
C210.041 (6)0.056 (7)0.046 (6)0.006 (5)0.000 (5)0.025 (5)
C220.044 (6)0.058 (7)0.033 (5)0.014 (5)0.005 (5)0.000 (5)
C230.032 (5)0.039 (5)0.034 (5)0.013 (4)0.012 (4)0.020 (4)
C240.034 (5)0.056 (7)0.044 (6)0.017 (5)0.006 (5)0.021 (5)
C250.028 (5)0.038 (5)0.032 (4)0.022 (4)0.006 (4)0.003 (4)
C260.064 (8)0.041 (6)0.038 (5)0.019 (6)0.023 (5)0.005 (5)
C270.053 (7)0.059 (8)0.059 (7)0.001 (6)0.013 (6)0.014 (6)
C280.032 (5)0.044 (6)0.032 (5)0.007 (4)0.006 (4)0.012 (4)
C290.037 (5)0.042 (6)0.049 (6)0.008 (5)0.002 (4)0.013 (5)
C300.058 (7)0.032 (6)0.049 (6)0.006 (5)0.010 (5)0.002 (4)
C310.035 (5)0.022 (5)0.062 (7)0.003 (4)0.008 (5)0.002 (5)
C320.051 (7)0.030 (5)0.048 (6)0.015 (5)0.022 (5)0.009 (5)
C330.042 (6)0.043 (6)0.047 (6)0.018 (5)0.023 (5)0.002 (5)
C340.012 (4)0.089 (9)0.036 (5)0.003 (5)0.001 (4)0.015 (6)
C350.036 (6)0.054 (7)0.066 (8)0.014 (5)0.004 (5)0.033 (6)
C360.038 (5)0.046 (6)0.037 (5)0.003 (5)0.006 (4)0.012 (5)
C370.036 (5)0.045 (6)0.033 (5)0.012 (5)0.017 (4)0.008 (4)
C380.057 (7)0.053 (7)0.027 (5)0.010 (6)0.009 (4)0.011 (5)
C390.043 (6)0.045 (6)0.064 (7)0.017 (5)0.003 (5)0.009 (6)
C400.041 (5)0.053 (7)0.033 (5)0.014 (5)0.018 (4)0.008 (4)
Cu10.0317 (5)0.0242 (5)0.0233 (5)0.0076 (5)0.0020 (4)0.0027 (4)
Cu20.0231 (5)0.0273 (5)0.0242 (5)0.0048 (4)0.0024 (4)0.0038 (4)
Cu30.0272 (5)0.0249 (5)0.0243 (5)0.0030 (4)0.0068 (4)0.0012 (4)
Cu40.0290 (6)0.0259 (6)0.0273 (5)0.0001 (4)0.0066 (4)0.0060 (4)
N10.028 (4)0.029 (4)0.032 (4)0.000 (3)0.001 (3)0.000 (3)
N20.060 (6)0.049 (6)0.047 (5)0.016 (5)0.008 (5)0.007 (4)
N30.031 (4)0.043 (5)0.031 (4)0.009 (4)0.023 (3)0.016 (3)
N40.041 (5)0.044 (5)0.030 (4)0.004 (4)0.012 (4)0.017 (4)
N50.030 (4)0.047 (5)0.020 (3)0.002 (4)0.002 (3)0.005 (3)
N60.031 (4)0.048 (5)0.037 (4)0.012 (4)0.004 (3)0.011 (4)
N70.047 (5)0.021 (4)0.045 (5)0.001 (4)0.016 (4)0.008 (4)
N80.042 (5)0.059 (6)0.036 (4)0.022 (4)0.001 (4)0.021 (4)
O10.032 (3)0.028 (3)0.026 (3)0.000 (2)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—Cu12.4824 (13)C20—H20B0.9800
Br1—Cu22.5565 (14)C20—H20C0.9800
Br2—Cu12.5197 (13)C21—C221.316 (15)
Br2—Cu32.5264 (14)C21—N51.321 (14)
Br3—Cu42.4991 (15)C21—H21A0.9500
Br3—Cu12.5212 (13)C22—C231.397 (17)
Br4—Cu32.5097 (13)C22—C261.474 (17)
Br4—Cu22.5178 (12)C23—C241.239 (15)
Br5—Cu42.5162 (14)C23—H23A0.9500
Br5—Cu22.5203 (14)C24—C251.419 (12)
Br6—Cu32.4883 (14)C24—H24A0.9500
Br6—Cu42.5066 (14)C25—N51.377 (14)
C1—N11.348 (10)C25—H25A0.9500
C1—C21.416 (13)C26—N61.561 (14)
C1—H1A0.9500C26—C271.583 (17)
C2—C31.430 (15)C26—H26A1.0000
C2—C61.471 (13)C27—C281.625 (16)
C3—C41.401 (16)C27—H27A0.9900
C3—H3A0.9500C27—H27B0.9900
C4—C51.371 (15)C28—C291.488 (14)
C4—H4A0.9500C28—H28A0.9900
C5—N11.406 (11)C28—H28B0.9900
C5—H5A0.9500C29—N61.582 (13)
C6—N21.453 (14)C29—H29A0.9900
C6—C91.510 (16)C29—H29B0.9900
C6—H6A1.0000C30—N61.399 (14)
C7—C81.459 (14)C30—H30A0.9800
C7—N21.503 (13)C30—H30B0.9800
C7—H7A0.9900C30—H30C0.9800
C7—H7B0.9900C31—N71.133 (13)
C8—C91.486 (13)C31—C321.520 (14)
C8—H8A0.9900C31—H31A0.9500
C8—H8B0.9900C32—C331.285 (16)
C9—H9A0.9900C32—C361.467 (15)
C9—H9B0.9900C33—C341.358 (15)
C10—N21.490 (14)C33—H330.9500
C10—H10A0.9800C34—C351.329 (16)
C10—H10B0.9800C34—H34A0.9500
C10—H10C0.9800C35—N71.596 (14)
C11—N31.355 (12)C35—H35A0.9500
C11—C121.358 (14)C36—N81.456 (13)
C11—H11A0.9500C36—C391.499 (15)
C12—C131.451 (14)C36—H36A1.0000
C12—C161.494 (12)C37—N81.384 (12)
C13—C141.437 (15)C37—C381.637 (13)
C13—H13A0.9500C37—H37A0.9900
C14—C151.443 (14)C37—H37B0.9900
C14—H14A0.9500C38—C391.446 (17)
C15—N31.324 (12)C38—H38A0.9900
C15—H15A0.9500C38—H38B0.9900
C16—N41.441 (12)C39—H39A0.9900
C16—C191.611 (16)C39—H39B0.9900
C16—H16A1.0000C40—N81.364 (14)
C17—N41.501 (11)C40—H40A0.9800
C17—C181.507 (17)C40—H40B0.9800
C17—H17A0.9900C40—H40C0.9800
C17—H17B0.9900Cu1—O11.923 (7)
C18—C191.550 (14)Cu1—N11.992 (8)
C18—H18A0.9900Cu2—O11.921 (6)
C18—H18B0.9900Cu2—N31.993 (8)
C19—H19A0.9900Cu3—O11.951 (6)
C19—H19B0.9900Cu3—N52.049 (7)
C20—N41.495 (13)Cu4—N71.882 (8)
C20—H20A0.9800Cu4—O11.930 (6)
Cu1—Br1—Cu277.55 (4)H28A—C28—H28B108.0
Cu1—Br2—Cu377.83 (4)C28—C29—N6103.2 (7)
Cu4—Br3—Cu177.74 (4)C28—C29—H29A111.1
Cu3—Br4—Cu277.63 (4)N6—C29—H29A111.1
Cu4—Br5—Cu277.43 (4)C28—C29—H29B111.1
Cu3—Br6—Cu477.99 (4)N6—C29—H29B111.1
N1—C1—C2121.4 (8)H29A—C29—H29B109.1
N1—C1—H1A119.3N6—C30—H30A109.5
C2—C1—H1A119.3N6—C30—H30B109.5
C1—C2—C3117.7 (9)H30A—C30—H30B109.5
C1—C2—C6117.0 (8)N6—C30—H30C109.5
C3—C2—C6123.5 (9)H30A—C30—H30C109.5
C4—C3—C2119.6 (11)H30B—C30—H30C109.5
C4—C3—H3A120.2N7—C31—C32134.8 (10)
C2—C3—H3A120.2N7—C31—H31A112.6
C5—C4—C3118.9 (10)C32—C31—H31A112.6
C5—C4—H4A120.6C33—C32—C36130.6 (10)
C3—C4—H4A120.6C33—C32—C31107.5 (10)
C4—C5—N1121.9 (9)C36—C32—C31121.3 (10)
C4—C5—H5A119.1C32—C33—C34127.2 (11)
N1—C5—H5A119.1C32—C33—H33116.4
N2—C6—C2111.8 (9)C34—C33—H33116.4
N2—C6—C9103.0 (8)C35—C34—C33119.5 (10)
C2—C6—C9117.1 (9)C35—C34—H34A120.3
N2—C6—H6A108.2C33—C34—H34A120.3
C2—C6—H6A108.2C34—C35—N7116.2 (10)
C9—C6—H6A108.2C34—C35—H35A121.9
C8—C7—N2101.4 (8)N7—C35—H35A121.9
C8—C7—H7A111.5N8—C36—C32117.6 (8)
N2—C7—H7A111.5N8—C36—C39100.9 (9)
C8—C7—H7B111.5C32—C36—C39115.6 (10)
N2—C7—H7B111.5N8—C36—H36A107.4
H7A—C7—H7B109.3C32—C36—H36A107.4
C7—C8—C9111.3 (9)C39—C36—H36A107.4
C7—C8—H8A109.4N8—C37—C38101.3 (8)
C9—C8—H8A109.4N8—C37—H37A111.5
C7—C8—H8B109.4C38—C37—H37A111.5
C9—C8—H8B109.4N8—C37—H37B111.5
H8A—C8—H8B108.0C38—C37—H37B111.5
C8—C9—C6101.5 (9)H37A—C37—H37B109.3
C8—C9—H9A111.5C39—C38—C37104.7 (8)
C6—C9—H9A111.5C39—C38—H38A110.8
C8—C9—H9B111.5C37—C38—H38A110.8
C6—C9—H9B111.5C39—C38—H38B110.8
H9A—C9—H9B109.3C37—C38—H38B110.8
N2—C10—H10A109.5H38A—C38—H38B108.9
N2—C10—H10B109.5C38—C39—C36108.7 (10)
H10A—C10—H10B109.5C38—C39—H39A110.0
N2—C10—H10C109.5C36—C39—H39A110.0
H10A—C10—H10C109.5C38—C39—H39B110.0
H10B—C10—H10C109.5C36—C39—H39B110.0
N3—C11—C12120.3 (8)H39A—C39—H39B108.3
N3—C11—H11A119.9N8—C40—H40A109.5
C12—C11—H11A119.9N8—C40—H40B109.5
C11—C12—C13126.6 (8)H40A—C40—H40B109.5
C11—C12—C16118.8 (9)N8—C40—H40C109.5
C13—C12—C16114.5 (9)H40A—C40—H40C109.5
C14—C13—C12111.1 (8)H40B—C40—H40C109.5
C14—C13—H13A124.4O1—Cu1—N1177.7 (3)
C12—C13—H13A124.4O1—Cu1—Br186.9 (2)
C13—C14—C15118.7 (9)N1—Cu1—Br191.6 (2)
C13—C14—H14A120.6O1—Cu1—Br286.56 (19)
C15—C14—H14A120.6N1—Cu1—Br292.9 (2)
N3—C15—C14125.4 (10)Br1—Cu1—Br2125.77 (5)
N3—C15—H15A117.3O1—Cu1—Br385.83 (18)
C14—C15—H15A117.3N1—Cu1—Br396.5 (2)
N4—C16—C12113.6 (8)Br1—Cu1—Br3121.13 (5)
N4—C16—C19103.1 (8)Br2—Cu1—Br3111.94 (5)
C12—C16—C19114.3 (8)O1—Cu2—N3176.4 (3)
N4—C16—H16A108.5O1—Cu2—Br486.60 (18)
C12—C16—H16A108.5N3—Cu2—Br496.0 (2)
C19—C16—H16A108.5O1—Cu2—Br586.45 (19)
N4—C17—C18102.2 (9)N3—Cu2—Br594.3 (3)
N4—C17—H17A111.3Br4—Cu2—Br5123.46 (6)
C18—C17—H17A111.3O1—Cu2—Br184.8 (2)
N4—C17—H17B111.3N3—Cu2—Br191.7 (2)
C18—C17—H17B111.3Br4—Cu2—Br1118.39 (5)
H17A—C17—H17B109.2Br5—Cu2—Br1116.69 (5)
C17—C18—C19106.7 (8)O1—Cu3—N5175.1 (3)
C17—C18—H18A110.4O1—Cu3—Br686.91 (19)
C19—C18—H18A110.4N5—Cu3—Br696.3 (2)
C17—C18—H18B110.4O1—Cu3—Br486.20 (19)
C19—C18—H18B110.4N5—Cu3—Br489.0 (2)
H18A—C18—H18B108.6Br6—Cu3—Br4122.88 (5)
C18—C19—C16104.1 (8)O1—Cu3—Br285.78 (19)
C18—C19—H19A110.9N5—Cu3—Br295.7 (2)
C16—C19—H19A110.9Br6—Cu3—Br2121.51 (5)
C18—C19—H19B110.9Br4—Cu3—Br2114.38 (5)
C16—C19—H19B110.9N7—Cu4—O1175.9 (4)
H19A—C19—H19B109.0N7—Cu4—Br391.2 (3)
N4—C20—H20A109.5O1—Cu4—Br386.29 (19)
N4—C20—H20B109.5N7—Cu4—Br691.4 (2)
H20A—C20—H20B109.5O1—Cu4—Br686.83 (19)
N4—C20—H20C109.5Br3—Cu4—Br6116.56 (5)
H20A—C20—H20C109.5N7—Cu4—Br597.7 (3)
H20B—C20—H20C109.5O1—Cu4—Br586.36 (19)
C22—C21—N5123.1 (11)Br3—Cu4—Br5128.08 (5)
C22—C21—H21A118.5Br6—Cu4—Br5114.23 (5)
N5—C21—H21A118.5C1—N1—C5119.4 (8)
C21—C22—C23117.8 (11)C1—N1—Cu1122.0 (6)
C21—C22—C26124.5 (12)C5—N1—Cu1118.6 (6)
C23—C22—C26117.7 (9)C6—N2—C10105.4 (9)
C24—C23—C22120.6 (10)C6—N2—C7104.8 (9)
C24—C23—H23A119.7C10—N2—C7106.9 (8)
C22—C23—H23A119.7C15—N3—C11117.5 (8)
C23—C24—C25123.0 (11)C15—N3—Cu2125.7 (7)
C23—C24—H24A118.5C11—N3—Cu2116.8 (6)
C25—C24—H24A118.5C16—N4—C20116.8 (9)
N5—C25—C24115.4 (9)C16—N4—C17108.7 (8)
N5—C25—H25A122.3C20—N4—C17112.0 (8)
C24—C25—H25A122.3C21—N5—C25119.7 (8)
C22—C26—N6106.4 (9)C21—N5—Cu3121.1 (7)
C22—C26—C27112.9 (9)C25—N5—Cu3118.9 (6)
N6—C26—C27103.9 (9)C30—N6—C26114.2 (8)
C22—C26—H26A111.1C30—N6—C29106.9 (8)
N6—C26—H26A111.1C26—N6—C29100.3 (8)
C27—C26—H26A111.1C31—N7—C35111.7 (8)
C26—C27—C2898.1 (9)C31—N7—Cu4126.9 (8)
C26—C27—H27A112.1C35—N7—Cu4121.3 (6)
C28—C27—H27A112.1C40—N8—C37120.6 (9)
C26—C27—H27B112.1C40—N8—C36110.2 (9)
C28—C27—H27B112.1C37—N8—C36116.1 (8)
H27A—C27—H27B109.8Cu2—O1—Cu1110.4 (3)
C29—C28—C27111.1 (9)Cu2—O1—Cu4109.7 (3)
C29—C28—H28A109.4Cu1—O1—Cu4109.7 (3)
C27—C28—H28A109.4Cu2—O1—Cu3109.0 (3)
C29—C28—H28B109.4Cu1—O1—Cu3109.8 (3)
C27—C28—H28B109.4Cu4—O1—Cu3108.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br30.952.603.292 (9)130
C15—H15A···Br40.952.713.362 (10)126
C21—H21A···Br20.952.773.372 (10)122
C25—H25A···Br60.952.753.332 (9)120
C30—H30C···Br6i0.982.923.844 (10)158
C35—H35A···Br50.952.683.259 (10)120
C39—H39B···Br5ii0.992.883.764 (11)150
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Cu4Br6O(C10H14N2)4]
Mr1398.55
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)12.9505 (5), 13.2850 (3), 14.2555 (2)
β (°) 92.221 (2)
V3)2450.78 (11)
Z2
Radiation typeMo Kα
µ (mm1)6.64
Crystal size (mm)0.20 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.29, 0.40
No. of measured, independent and
observed [I > 2σ(I)] reflections
22605, 9345, 8124
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 1.08
No. of reflections9345
No. of parameters536
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.82
Absolute structureFlack (1983), 4309 Friedel pairs
Absolute structure parameter0.058 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br30.952.603.292 (9)130.2
C15—H15A···Br40.952.713.362 (10)126.4
C21—H21A···Br20.952.773.372 (10)121.7
C25—H25A···Br60.952.753.332 (9)119.9
C30—H30C···Br6i0.982.923.844 (10)157.6
C35—H35A···Br50.952.683.259 (10)119.5
C39—H39B···Br5ii0.992.883.764 (11)149.8
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 50572039) and the Natural Science Foundation of Jiangsu Province (BK2006199).

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaendler, H. M. (1990). Acta Cryst. C46, 2054–2057.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161–164.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m958-m959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds