organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1201-o1202

2-Amino-N-(2-hydr­­oxy-3-meth­oxy­benzyl­­idene)aniline

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 24 May 2008; accepted 29 May 2008; online 7 June 2008)

In the title compound, C14H14N2O2, the dihedral angle between the two benzene rings is 9.67 (10)°. Two intra­molecular O—H⋯N and N—H⋯N hydrogen bonds involving the hydr­oxy and amino groups generate S(6) and S(5) ring motifs, respectively. In the crystal structure, N—H⋯O hydrogen bonds link neighboring mol­ecules. Mol­ecules are also stacked in a head-to-tail fashion along the c axis through ππ inter­actions [centroid–centroid separation of 3.7357 (12) Å] and are further linked by weak inter­molecular C—H⋯π inter­actions, giving a zigzag arrangement along the b axis.

Related literature

For related literature on hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the biological activity of imines, see, for example: Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37. ]); More et al. (2001[More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]); Baseer et al. (2000[Baseer, M. A., Jadhav, V. D., Phule, R. M., Archana, Y. V. & Vibhute, Y. B. (2000). Orient. J. Chem. 16, 553-556.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Kabeer et al. (2001[Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem. 13, 496-500.]); Kuz'min et al. (2000[Kuz'min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol. 47, 867-876.]); Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]). For related structures, see, for example: Corden et al. (1996[Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777-2779.]); Govindasamy et al. (1999[Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368-1369.]). For synthesis, see: Al-Douh et al. (2006[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954-o3956.], 2007[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570-o3571.]). For related literature, see: Berger (2001[Berger, J. M. (2001). PhD Thesis. Virginia Polytechnic Institute and State University, USA.]); Elerman & Kabak (1997[Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372-374.]); Latif et al. (1983[Latif, N., Mishriky, N. & Assad, F. M. (1983). Recl J. R. Neth. Chem. Soc. 102, 73-77.]); Liu et al. (2006[Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908-o5909.]); Shah et al. (2008[Shah, A. M., Helal, M. H. S., Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). Proceedings of the 22nd Scientific Meeting of the Malaysian Society of Pharmacology and Physiology, April 5-6, Kuala Lumpur, Malaysia, Poster 58.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O2

  • Mr = 242.27

  • Monoclinic, P 21 /c

  • a = 13.2790 (6) Å

  • b = 14.4810 (6) Å

  • c = 6.1928 (3) Å

  • β = 103.116 (3)°

  • V = 1159.77 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.996

  • 19968 measured reflections

  • 3402 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.206

  • S = 1.06

  • 3402 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.88 1.77 2.602 (2) 158
N2—H1N2⋯O1i 0.93 (3) 2.56 (3) 3.030 (3) 111 (2)
N2—H1N2⋯O2i 0.93 (3) 2.29 (3) 3.181 (3) 161 (3)
N2—H2N2⋯N1 0.87 (3) 2.23 (3) 2.759 (3) 119 (2)
C3—H3⋯Cg1ii 0.94 (3) 2.64 (3) 3.458 (2) 145 (2)
C11—H11⋯Cg2iii 0.91 (3) 2.87 (3) 3.538 (2) 142 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Imines are an important class of compounds and rank among the most versatile synthetic organic intermediates, which are important for the synthesis of biologically important compounds (Singh & Dash, 1988; More et al., 2001; Baseer et al., 2000; El-Masry et al., 2000; Kabeer et al., 2001; Kuz'min et al., 2000; Desai et al., 2001). Berger (2001) evaluated some bis-Schiff bases using 1138 and Sc-7 yeast assays, and a A2780 cytotoxicity test. They showed significant activity in a single dose test. The reactions of some phenolic aldehydes with o-phenylenediamine have been examined in some detail including the isolation of the title compound (Latif et al., 1983). Our group has been actively involved in synthesizing bis-Schiff bases and investigating their DNA binding ability using spectroscopic techniques employing calf thymus DNA (Shah et al., 2008). We have also obtained single crystals of benzimidazole and the bis-Schiff base derived from the title compound (I) and their structures are consistent with those reported earlier (Elerman & Kabak, 1997; Liu et al., 2006). However, the crystal structure of compound (I) was never reported and we present its structure here (Fig. 1).

The C1–C6 benzene ring is not coplanar with the phenylenediamine and makes a dihedral angle of 9.67 (10)° with C8–C13 benzene ring. Two intramolecular O1—H1O1···N1 and N2—H2N2···N1 hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The crystal is stabilized by intramolecular O—H···N and N—H···N and intermolecular N—H···O hydrogen bonds. Molecules (Fig. 2) are also arranged into zig-zag chains by C—H···π interactions along the b-axis (Table 1); Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 phenyl rings, respectively. In the crystal packing (Fig. 3), molecules are stacked along the c axis by π···π interactions with Cg1···Cg2 = 3.7357 (12) Å: symmetry codes x, y, -1 + z and x, y, 1 + z;

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For values of bond lengths and angles, see: Allen et al. (1987). For the biological activity of imines, see, for example: Singh & Dash (1988); More et al. (2001); Baseer et al. (2000); El-Masry et al. (2000); Kabeer et al. (2001); Kuz'min et al. (2000); Desai et al. (2001). For related structures, see, for example: Corden et al. (1996); Govindasamy et al. (1999). For synthesis, see: Al-Douh et al. (2006, 2007). For related literature, see: Berger (2001); Elerman & Kabak (1997); Latif et al. (1983); Liu et al. (2006); Shah et al. (2008).

Experimental top

The synthetic method has been described earlier (Al-Douh et al., 2006, 2007). Single crystals suitable for X-ray diffraction were obtained by evaporation of a n-hexane solution at room temperature.

Refinement top

The H-atom attached to O1 is located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The methyl hydrogen atoms were fixed geometrically and refined using a rotating model with isotropic thermal parameters 1.5 that of the parent atom. The remaining hydrogen atoms were located in a difference map and refined freely with their isotropic thermal parameters 1.2 times those of the parent atoms. The highest peak is located 0.96 Å from H2. The deepest hole is located 0.41 Å from H1O1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular H bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) showing the zigzag stacking arrangement along the b axis. H bonds are drawn as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the c axis showing the molecular stacking. H bonds are drawn as dashed lines.
2-Amino-N-(2-hydroxy-3-methoxybenzylidene)aniline top
Crystal data top
C14H14N2O2F(000) = 512
Mr = 242.27Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4220 reflections
a = 13.2790 (6) Åθ = 2.8–29.4°
b = 14.4810 (6) ŵ = 0.09 mm1
c = 6.1928 (3) ÅT = 100 K
β = 103.116 (3)°Needle, yellow
V = 1159.77 (9) Å30.45 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.959, Tmax = 0.996k = 2020
19968 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.099P)2 + 1.0519P]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H14N2O2V = 1159.77 (9) Å3
Mr = 242.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2790 (6) ŵ = 0.09 mm1
b = 14.4810 (6) ÅT = 100 K
c = 6.1928 (3) Å0.45 × 0.15 × 0.05 mm
β = 103.116 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2532 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.996Rint = 0.052
19968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.66 e Å3
3402 reflectionsΔρmin = 0.31 e Å3
194 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12067 (11)1.03082 (11)0.3256 (2)0.0223 (4)
H1O10.15501.00240.23880.027*
O20.07156 (12)1.12650 (11)0.6488 (3)0.0227 (4)
N10.26011 (14)0.97668 (12)0.1182 (3)0.0184 (4)
N20.10257 (15)0.90586 (15)0.2092 (3)0.0251 (4)
H1N20.058 (2)0.909 (2)0.349 (5)0.030*
H2N20.110 (2)0.954 (2)0.124 (5)0.030*
C10.20451 (16)0.89186 (15)0.2205 (3)0.0192 (4)
C20.22641 (18)0.83919 (16)0.3939 (4)0.0225 (4)
H20.165 (2)0.8218 (19)0.497 (5)0.027*
C30.32708 (19)0.82255 (14)0.4076 (4)0.0219 (5)
H30.339 (2)0.7874 (19)0.528 (5)0.026*
C40.40918 (18)0.85597 (15)0.2452 (4)0.0216 (4)
H40.477 (2)0.8429 (19)0.253 (4)0.026*
C50.38917 (17)0.90701 (14)0.0713 (4)0.0196 (4)
H50.447 (2)0.9297 (18)0.037 (5)0.024*
C60.28785 (16)0.92618 (14)0.0560 (3)0.0168 (4)
C70.32762 (16)1.02164 (14)0.2604 (3)0.0192 (4)
H70.403 (2)1.0240 (18)0.247 (4)0.023*
C80.30011 (16)1.07288 (14)0.4405 (3)0.0174 (4)
C90.37772 (17)1.11996 (14)0.5926 (4)0.0195 (4)
H90.449 (2)1.1215 (18)0.569 (4)0.023*
C100.35346 (17)1.16977 (14)0.7632 (4)0.0196 (4)
H100.407 (2)1.2018 (18)0.862 (5)0.024*
C110.25165 (17)1.17414 (14)0.7875 (3)0.0189 (4)
H110.238 (2)1.2072 (18)0.902 (5)0.023*
C120.17424 (16)1.12778 (14)0.6423 (3)0.0177 (4)
C130.19759 (15)1.07615 (14)0.4659 (3)0.0170 (4)
C140.04456 (18)1.17522 (17)0.8283 (4)0.0263 (5)
H14A0.08351.15100.96650.039*
H14B0.02801.16780.82090.039*
H14C0.06001.23960.81810.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (7)0.0307 (8)0.0180 (7)0.0022 (6)0.0024 (6)0.0069 (6)
O20.0202 (8)0.0294 (8)0.0203 (7)0.0001 (6)0.0081 (6)0.0067 (6)
N10.0189 (8)0.0220 (9)0.0144 (8)0.0017 (7)0.0042 (7)0.0003 (6)
N20.0188 (9)0.0345 (11)0.0220 (10)0.0020 (8)0.0045 (8)0.0037 (8)
C10.0186 (10)0.0229 (10)0.0166 (9)0.0026 (7)0.0052 (8)0.0020 (8)
C20.0253 (11)0.0247 (10)0.0156 (10)0.0014 (8)0.0009 (8)0.0010 (8)
C30.0354 (12)0.0175 (10)0.0149 (9)0.0024 (8)0.0103 (9)0.0014 (7)
C40.0214 (10)0.0217 (10)0.0245 (11)0.0023 (8)0.0110 (9)0.0031 (8)
C50.0182 (10)0.0201 (9)0.0196 (10)0.0015 (8)0.0026 (8)0.0005 (8)
C60.0219 (10)0.0163 (9)0.0126 (9)0.0008 (7)0.0045 (7)0.0003 (7)
C70.0203 (10)0.0207 (10)0.0174 (10)0.0007 (8)0.0056 (8)0.0022 (7)
C80.0200 (10)0.0176 (9)0.0154 (9)0.0026 (7)0.0054 (7)0.0014 (7)
C90.0171 (10)0.0220 (10)0.0195 (10)0.0003 (8)0.0042 (8)0.0032 (8)
C100.0205 (10)0.0195 (9)0.0168 (10)0.0020 (8)0.0000 (8)0.0002 (8)
C110.0258 (11)0.0175 (9)0.0139 (9)0.0013 (8)0.0055 (8)0.0014 (7)
C120.0165 (9)0.0211 (9)0.0161 (9)0.0027 (7)0.0049 (7)0.0019 (7)
C130.0178 (10)0.0188 (9)0.0130 (9)0.0004 (7)0.0003 (7)0.0006 (7)
C140.0252 (11)0.0362 (13)0.0194 (11)0.0023 (9)0.0095 (9)0.0055 (9)
Geometric parameters (Å, º) top
O1—C131.351 (2)C5—C61.398 (3)
O1—H1O10.8812C5—H50.95 (3)
O2—C121.373 (2)C7—C81.454 (3)
O2—C141.429 (3)C7—H71.03 (3)
N1—C71.282 (3)C8—C91.405 (3)
N1—C61.419 (3)C8—C131.406 (3)
N2—C11.386 (3)C9—C101.376 (3)
N2—H1N20.93 (3)C9—H91.00 (3)
N2—H2N20.86 (3)C10—C111.395 (3)
C1—C21.400 (3)C10—H100.95 (3)
C1—C61.413 (3)C11—C121.377 (3)
C2—C31.380 (3)C11—H110.91 (3)
C2—H20.94 (3)C12—C131.415 (3)
C3—C41.392 (3)C14—H14A0.9600
C3—H30.95 (3)C14—H14B0.9600
C4—C51.381 (3)C14—H14C0.9600
C4—H40.94 (3)
C13—O1—H1O1101.4C8—C7—H7117.8 (15)
C12—O2—C14116.25 (17)C9—C8—C13119.34 (18)
C7—N1—C6121.47 (18)C9—C8—C7119.24 (19)
C1—N2—H1N2112.5 (18)C13—C8—C7121.42 (19)
C1—N2—H2N2100 (2)C10—C9—C8120.3 (2)
H1N2—N2—H2N2119 (3)C10—C9—H9119.9 (15)
N2—C1—C2119.6 (2)C8—C9—H9119.5 (15)
N2—C1—C6121.74 (19)C9—C10—C11120.5 (2)
C2—C1—C6118.64 (19)C9—C10—H10118.3 (16)
C3—C2—C1121.0 (2)C11—C10—H10121.2 (16)
C3—C2—H2127.5 (17)C12—C11—C10120.37 (19)
C1—C2—H2111.4 (17)C12—C11—H11121.2 (17)
C2—C3—C4120.38 (19)C10—C11—H11118.4 (17)
C2—C3—H3118.6 (16)O2—C12—C11125.89 (18)
C4—C3—H3121.0 (17)O2—C12—C13114.12 (18)
C5—C4—C3119.5 (2)C11—C12—C13119.99 (19)
C5—C4—H4120.7 (17)O1—C13—C8121.42 (18)
C3—C4—H4119.9 (17)O1—C13—C12119.14 (18)
C4—C5—C6121.2 (2)C8—C13—C12119.44 (18)
C4—C5—H5117.7 (17)O2—C14—H14A109.5
C6—C5—H5121.1 (16)O2—C14—H14B109.5
C5—C6—C1119.32 (18)H14A—C14—H14B109.5
C5—C6—N1124.99 (19)O2—C14—H14C109.5
C1—C6—N1115.67 (18)H14A—C14—H14C109.5
N1—C7—C8121.86 (19)H14B—C14—H14C109.5
N1—C7—H7120.3 (15)
N2—C1—C2—C3178.8 (2)C13—C8—C9—C100.8 (3)
C6—C1—C2—C31.4 (3)C7—C8—C9—C10179.32 (19)
C1—C2—C3—C41.7 (3)C8—C9—C10—C110.0 (3)
C2—C3—C4—C50.8 (3)C9—C10—C11—C120.7 (3)
C3—C4—C5—C60.4 (3)C14—O2—C12—C112.4 (3)
C4—C5—C6—C10.6 (3)C14—O2—C12—C13178.04 (18)
C4—C5—C6—N1178.96 (19)C10—C11—C12—O2179.84 (19)
N2—C1—C6—C5177.56 (19)C10—C11—C12—C130.7 (3)
C2—C1—C6—C50.2 (3)C9—C8—C13—O1179.00 (18)
N2—C1—C6—N10.9 (3)C7—C8—C13—O10.9 (3)
C2—C1—C6—N1178.23 (19)C9—C8—C13—C120.9 (3)
C7—N1—C6—C511.1 (3)C7—C8—C13—C12179.28 (18)
C7—N1—C6—C1170.51 (19)O2—C12—C13—O10.7 (3)
C6—N1—C7—C8179.44 (18)C11—C12—C13—O1179.74 (18)
N1—C7—C8—C9179.29 (19)O2—C12—C13—C8179.42 (17)
N1—C7—C8—C130.6 (3)C11—C12—C13—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.881.772.602 (2)158
N2—H1N2···O1i0.93 (3)2.56 (3)3.030 (3)111 (2)
N2—H1N2···O2i0.93 (3)2.29 (3)3.181 (3)161 (3)
N2—H2N2···N10.87 (3)2.23 (3)2.759 (3)119 (2)
C3—H3···Cg1ii0.94 (3)2.64 (3)3.458 (2)145 (2)
C11—H11···Cg2iii0.91 (3)2.87 (3)3.538 (2)142 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14N2O2
Mr242.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2790 (6), 14.4810 (6), 6.1928 (3)
β (°) 103.116 (3)
V3)1159.77 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
19968, 3402, 2532
Rint0.052
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.206, 1.06
No. of reflections3402
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.88001.77002.602 (2)158.00
N2—H1N2···O1i0.93 (3)2.56 (3)3.030 (3)111 (2)
N2—H1N2···O2i0.93 (3)2.29 (3)3.181 (3)161 (3)
N2—H2N2···N10.87 (3)2.23 (3)2.759 (3)119 (2)
C3—H3···Cg1ii0.94 (3)2.64 (3)3.458 (2)145 (2)
C11—H11···Cg2iii0.91 (3)2.87 (3)3.538 (2)142 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z3/2; (iii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: shafida@usm.my.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for an IRPA short-term grant (No. 304/PKIMIA/638007) to conduct this work. MHA thanks the Yemen Government and Hadhramout University of Science and Technology (HUST) for financial scholarship support. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954–o3956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570–o3571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaseer, M. A., Jadhav, V. D., Phule, R. M., Archana, Y. V. & Vibhute, Y. B. (2000). Orient. J. Chem. 16, 553–556.  CAS Google Scholar
First citationBerger, J. M. (2001). PhD Thesis. Virginia Polytechnic Institute and State University, USA.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationElerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationGovindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem. 13, 496–500.  Google Scholar
First citationKuz'min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol. 47, 867–876.  Web of Science PubMed CAS Google Scholar
First citationLatif, N., Mishriky, N. & Assad, F. M. (1983). Recl J. R. Neth. Chem. Soc. 102, 73–77.  CAS Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationShah, A. M., Helal, M. H. S., Al-Douh, M. H., Hamid, S. A. & Osman, H. (2008). Proceedings of the 22nd Scientific Meeting of the Malaysian Society of Pharmacology and Physiology, April 5–6, Kuala Lumpur, Malaysia, Poster 58.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1201-o1202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds