organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Tetra­zol-5-yl)benzoic acid monohydrate

aChemistry and Life Sciences School, Quanzhou Normal University, Quanzhou, Fujian 362000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: zfk@ms.fjirsm.ac.cn

(Received 4 June 2008; accepted 24 June 2008; online 28 June 2008)

The asymmetric unit of the title compound, C8H6N4O2·H2O, consists of one 4-(1H-tetra­zol-5-yl)benzoic acid mol­ecule and one water mol­ecule. Hydrogen-bonding and ππ stacking (centroid–centroid distance between tetra­zole and benzene rings = 3.78 Å) inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For general background, see: James et al. (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Pan et al. (2006[Pan, L., Parker, B., Huang, X., Olson, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180-4180.]); Li et al. (2007[Li, X.-L., Chen, K., Liu, Y., Wang, Z.-X., Wang, T.-W., Zuo, J.-L., Li, Y.-Z., Wang, Y., Zhu, J.-S., Liu, J.-M., Song, Y. & You, X.-Z. (2007). Angew. Chem. Int. Ed. 46, 6820-6823.]). For related tetra­zole ligands, see: Demko et al. (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N4O2·H2O

  • Mr = 208.18

  • Monoclinic, P 21 /n

  • a = 4.914 (2) Å

  • b = 5.219 (2) Å

  • c = 34.720 (13) Å

  • β = 91.00 (3)°

  • V = 890.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (Psi in WinAFC Diffractometer Control Software; Rigaku 2002[Rigaku (2002). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.927, Tmax = 1.000 (expected range = 0.917–0.988)

  • 3386 measured reflections

  • 1576 independent reflections

  • 1270 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 200 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.01

  • 1576 reflections

  • 148 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.877 (10) 1.744 (10) 2.620 (2) 176 (3)
O1W—H1WA⋯N2ii 0.858 (10) 2.234 (16) 2.957 (2) 142 (2)
O1W—H1WB⋯N3iii 0.859 (10) 2.046 (10) 2.903 (2) 175 (2)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+{\script{7\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y+1, z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 2002[Rigaku (2002). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The current interest in crystal engineering of metal-organic coordination polymers (MOCPs) stems not only from their intriguing variety of architectures and topologies but also from their characteristic physical and/or chemical properties, including ferroelectricity, luminescence, magnetism, nonlinear optics, and gas storage, (James, et al. 2003; Kitagawa, et al. 2007; Maspoch, et al. 2007; Pan, et al. 2006; Li, et al. 2007). Multifunctional organic ligands are necessary for constructing such frameworks. Tetrazoles are versatile ligands due to their many potential donor atoms. They can be synthesized easily by the reaction of a cyano group with NaN3 in the presence of ZnBr2 (Lewis acid) as a catalyst and water under reflux or hydrothermal reaction conditions (Demko, et al. 2001). Here, we report the synthesis and crystal structure of a new tetrazole [C8H6N4O2].H2O (I).

The asymmetric unit of (I), consists of one crystallographically independent 4–5H-tetrazolyl-benzenecarboxylate molecule and one lattice water molecule (Figure 1). The molecular skeleton of I is essentially planar and the dihedral angle between the tetrazole and benzene rings is 0.16 °. Two adjacent 4–5H-tetrazolyl-benzenecarboxylate molecules are linked to form a centrosymmetric dimer through O1—H1···O2 hydrogen bonds. These dimers are bridged by lattice water molecules through O1W—H1WA···N2 and O1W—H1WB···N3 hydrogen bonds to form a two-dimensional layer along the [0 1 0] and [7 0 1] directions, (Figure 2). The layers are organized further by π-π stacking interactions between the tetrazole and benzene rings to form a three-dimensional framework. The two rings involved in the π-π stacking interactions are nearly parallel to each other, with a dihedral angle of 0.15 ° between them. The Cg1···Cg2i distance is 3.78 Å where Cg1 and Cg2 are the centroids of the C1···C6 and C8/N1···N4 rings respectively (i = x-1, y, z).

Related literature top

For general background, see: James, et al. (2003); Kitagawa & Matsuda (2007); Maspoch, et al. (2007); Pan, et al. (2006); Li, et al. (2007). For related tetrazole ligands, see: Demko, et al. (2001).

Experimental top

A mixture of zinc bromide (225 mg, 1.0 mmol), Na(4-cba) (4-Hcba = 4-cyanobenzoic acid) (65 mg, 1.0 mmol) and NaN3 (65 mg, 1.0 mmol) in 10 ml water were transferred into a Teflon-line stainless steel autoclave and heated to 413 K for 3 days, then cooled to room temperature at the rate of 1 K/h. The resulting solid powder was acidified with HCl (2M) to give the target product. Crystals were obtained by slow evaporation of the resulting solution.

Refinement top

The H atoms bound to O1W, O1 and N1 were located in a difference Fourier synthesis and refined with isotropic displacement parameters and the O(N)—H distances restrained to a target value of 0.86 (1) Å, and with Uiso(H) of O1W being 1.2Ueq(O1W). The remaining aromatic H atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 2002); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2004; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of (I) into two-dimensional layers linked by O—H···N and O—H···O hydrogen bonds (green dashed lines).
[Figure 3] Fig. 3. A three-dimensional framework for (I) linked by the π-π stacking interactions (green dashed lines). Hydrogen bonds are shown as yellow dashed lines.
4-(1H-Tetrazol-5-yl)benzoic acid monohydrate top
Crystal data top
C8H6N4O2·H2OF(000) = 432
Mr = 208.18Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20 reflections
a = 4.914 (2) Åθ = 12–30°
b = 5.219 (2) ŵ = 0.12 mm1
c = 34.720 (13) ÅT = 293 K
β = 91.00 (3)°Block, colorless
V = 890.4 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
1270 reflections with I > 2σ(I)
Radiation source: rotating-anode generatorRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 3.5°
ω–2θ scansh = 15
Absorption correction: ψ scan
(Psi in WinAFC Diffractometer Control Software; Rigaku 2002)
k = 66
Tmin = 0.928, Tmax = 1.000l = 4141
3386 measured reflections3 standard reflections every 200 reflections
1576 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.366P]
where P = (Fo2 + 2Fc2)/3
1576 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.17 e Å3
4 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H6N4O2·H2OV = 890.4 (6) Å3
Mr = 208.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.914 (2) ŵ = 0.12 mm1
b = 5.219 (2) ÅT = 293 K
c = 34.720 (13) Å0.20 × 0.10 × 0.10 mm
β = 91.00 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
1270 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Psi in WinAFC Diffractometer Control Software; Rigaku 2002)
Rint = 0.028
Tmin = 0.928, Tmax = 1.0003 standard reflections every 200 reflections
3386 measured reflections intensity decay: 0.3%
1576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
1576 reflectionsΔρmin = 0.29 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W1.3075 (3)1.2115 (3)0.22404 (4)0.0510 (4)
H1WA1.400 (4)1.292 (4)0.2414 (5)0.061*
H1WB1.175 (3)1.304 (4)0.2153 (6)0.061*
O10.6331 (3)1.1354 (3)0.04240 (4)0.0456 (4)
H10.509 (4)1.157 (6)0.0242 (6)0.100*
O20.7482 (3)0.7840 (3)0.00986 (3)0.0453 (4)
N11.6033 (3)0.8366 (3)0.18939 (4)0.0363 (4)
H21.514 (4)0.965 (3)0.1990 (6)0.068*
N21.8032 (3)0.7255 (3)0.21010 (4)0.0429 (4)
N31.8788 (3)0.5272 (3)0.19041 (4)0.0439 (4)
N41.7318 (3)0.5062 (3)0.15713 (4)0.0396 (4)
C10.9801 (3)0.8752 (3)0.06869 (4)0.0301 (4)
C21.1494 (4)0.6629 (3)0.06537 (5)0.0345 (4)
H2A1.13500.55760.04380.041*
C31.3393 (4)0.6083 (3)0.09416 (5)0.0338 (4)
H3A1.45310.46690.09180.041*
C41.3602 (3)0.7647 (3)0.12651 (4)0.0289 (4)
C51.1923 (4)0.9778 (3)0.12961 (5)0.0340 (4)
H5A1.20761.08390.15110.041*
C61.0034 (3)1.0320 (3)0.10098 (5)0.0332 (4)
H6A0.89081.17420.10330.040*
C70.7755 (3)0.9317 (3)0.03801 (5)0.0319 (4)
C81.5608 (3)0.7022 (3)0.15704 (4)0.0297 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0586 (9)0.0478 (9)0.0459 (8)0.0216 (7)0.0217 (6)0.0168 (6)
O10.0509 (8)0.0439 (8)0.0414 (7)0.0187 (7)0.0173 (6)0.0079 (6)
O20.0510 (8)0.0496 (8)0.0348 (7)0.0147 (7)0.0156 (6)0.0130 (6)
N10.0399 (9)0.0372 (9)0.0313 (8)0.0110 (7)0.0114 (6)0.0040 (6)
N20.0458 (9)0.0444 (9)0.0380 (8)0.0125 (8)0.0152 (7)0.0023 (7)
N30.0463 (9)0.0443 (9)0.0407 (8)0.0143 (8)0.0138 (7)0.0013 (7)
N40.0430 (9)0.0381 (9)0.0374 (8)0.0117 (7)0.0102 (7)0.0024 (7)
C10.0313 (9)0.0303 (9)0.0286 (8)0.0010 (7)0.0027 (7)0.0002 (7)
C20.0396 (10)0.0334 (10)0.0302 (9)0.0043 (8)0.0055 (7)0.0071 (7)
C30.0350 (9)0.0318 (9)0.0346 (9)0.0077 (8)0.0052 (7)0.0029 (7)
C40.0289 (8)0.0300 (9)0.0277 (8)0.0008 (7)0.0035 (7)0.0016 (7)
C50.0399 (10)0.0323 (9)0.0294 (9)0.0050 (8)0.0070 (7)0.0064 (7)
C60.0360 (9)0.0297 (9)0.0337 (9)0.0080 (8)0.0052 (7)0.0027 (7)
C70.0333 (9)0.0326 (9)0.0296 (9)0.0035 (8)0.0031 (7)0.0011 (7)
C80.0322 (9)0.0285 (9)0.0284 (8)0.0020 (8)0.0029 (7)0.0010 (7)
Geometric parameters (Å, º) top
O1W—H1WA0.858 (10)C1—C21.392 (2)
O1W—H1WB0.859 (10)C1—C71.482 (2)
O1—C71.283 (2)C2—C31.385 (2)
O1—H10.877 (10)C2—H2A0.9300
O2—C71.250 (2)C3—C41.391 (2)
N1—C81.337 (2)C3—H3A0.9300
N1—N21.339 (2)C4—C51.390 (2)
N1—H20.872 (10)C4—C81.471 (2)
N2—N31.298 (2)C5—C61.378 (2)
N3—N41.356 (2)C5—H5A0.9300
N4—C81.324 (2)C6—H6A0.9300
C1—C61.391 (2)
H1WA—O1W—H1WB111 (2)C4—C3—H3A120.0
C7—O1—H1113 (2)C5—C4—C3119.78 (15)
C8—N1—N2109.02 (14)C5—C4—C8120.84 (15)
C8—N1—H2130.9 (16)C3—C4—C8119.38 (15)
N2—N1—H2119.7 (15)C6—C5—C4120.14 (15)
N3—N2—N1106.08 (14)C6—C5—H5A119.9
N2—N3—N4111.08 (14)C4—C5—H5A119.9
C8—N4—N3105.55 (14)C5—C6—C1120.35 (16)
C6—C1—C2119.63 (15)C5—C6—H6A119.8
C6—C1—C7120.49 (15)C1—C6—H6A119.8
C2—C1—C7119.88 (15)O2—C7—O1123.55 (15)
C3—C2—C1120.02 (16)O2—C7—C1120.08 (15)
C3—C2—H2A120.0O1—C7—C1116.37 (14)
C1—C2—H2A120.0N4—C8—N1108.27 (14)
C2—C3—C4120.08 (16)N4—C8—C4126.17 (15)
C2—C3—H3A120.0N1—C8—C4125.55 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (1)1.74 (1)2.620 (2)176 (3)
O1W—H1WA···N2ii0.86 (1)2.23 (2)2.957 (2)142 (2)
O1W—H1WB···N3iii0.86 (1)2.05 (1)2.903 (2)175 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+7/2, y+1/2, z+1/2; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6N4O2·H2O
Mr208.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.914 (2), 5.219 (2), 34.720 (13)
β (°) 91.00 (3)
V3)890.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(Psi in WinAFC Diffractometer Control Software; Rigaku 2002)
Tmin, Tmax0.928, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3386, 1576, 1270
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.01
No. of reflections1576
No. of parameters148
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2004, SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.877 (10)1.744 (10)2.620 (2)176 (3)
O1W—H1WA···N2ii0.858 (10)2.234 (16)2.957 (2)142 (2)
O1W—H1WB···N3iii0.859 (10)2.046 (10)2.903 (2)175 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+7/2, y+1/2, z+1/2; (iii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences and the Natural Science Foundation of Fujian Province (A0420002 and E0510029).

References

First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationLi, X.-L., Chen, K., Liu, Y., Wang, Z.-X., Wang, T.-W., Zuo, J.-L., Li, Y.-Z., Wang, Y., Zhu, J.-S., Liu, J.-M., Song, Y. & You, X.-Z. (2007). Angew. Chem. Int. Ed. 46, 6820–6823.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, L., Parker, B., Huang, X., Olson, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180–4180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2002). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds