metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m935-m936

Hydrogen-bonding and ππ stacking inter­actions in tris­­(1,10-phenanthroline-κ2N,N′)nickel(II) bis­­{[1-tert-butyl­imidazole-2(3H)-thione-κS]tri­chloridonickelate(II)} aceto­nitrile disolvate

aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
*Correspondence e-mail: udaipfcy@iitr.ernet.in

(Received 1 April 2008; accepted 13 June 2008; online 19 June 2008)

The asymmetric unit of the title complex, [Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2CH3CN, consists of one anion, one-half of a cation and one acetonitrile mol­ecule. The NiII atom in the [Ni(phen)3]2+ cation (phen is 1,10-phenanthroline) lies on an inversion centre in an octa­hedral environment, whereas in the [NiCl3(tm)] anion [tm is 1-tert-butyl­imidazole-2(3H)-thione], the geometry is distorted tetra­hedral. In the crystal structure, inter­molecular C—H⋯Cl hydrogen bonds and ππ stacking inter­actions (centroid–centroid distance = 3.52 Å) lead to the formation of a three-dimensional framework. One of the methyl groups of the tert-butyl group of N-tert-butyl-2-thio­imidazole is disordered between two equally populated positions.

Related literature

For general background, see: Fatimi et al. (1994[Fatimi, J., Lagorce, J. F., Chabernaud, M. L., Buxeraud, J. & Raby, C. (1994). Boll. Chim. Farm. 133, 151-155.]); Iradyan et al. (1987[Iradyan, M. A., Ayvazyan, A. K., Mirzoyan, V. S., Paronikyan, G. M., Sarkisyan, T. P., Stepanyan, G. M., Arsenyan, F. G. & Garibdzhanyan, B. T. (1987). Pharm. Chem. J. 21, 403-408.]); Suescun et al. (1999[Suescun, L., Mombrú, A. W. & Mariezcurrena, R. A. (1999). Acta Cryst. C55, 1991-1993.]); Yu et al. (2003[Yu, J.-H., Jia, H.-B., Pan, L.-Y., Yang, Q.-X., Wang, T.-G., Xu, J.-Q., Cui, X.-B., Liu, Y.-J., Li, Y.-Z., Lu, C.-H. & Ma, T.-H. (2003). J. Solid State Chem. 175, 152-158.]); Fang & Dai (2006[Fang, H. & Dai, X. (2006). Acta Cryst. E62, m3565-m3566.]); Chen et al., (2007[Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166-m168.]); Senda et al. (2006[Senda, S., Ohki, Y., Hirayama, T., Toda, D., Chen, J.-L., Matsumoto, T., Kawaguchi, H. & Tatsumi, K. (2006). Inorg. Chem. 45, 9914-9925.]). For synthesis details, see: Kister et al. (1979[Kister, J., Assef, G., Miller, G. & Metzer, J. (1979). Can. J. Chem. 57, 813-821.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2C2H3N

  • Mr = 1324.04

  • Monoclinic, C 2/c

  • a = 22.8953 (15) Å

  • b = 15.2934 (10) Å

  • c = 19.9417 (19) Å

  • β = 123.543 (3)°

  • V = 5819.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.737, Tmax = 0.792

  • 30921 measured reflections

  • 5178 independent reflections

  • 3346 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.07

  • 5178 reflections

  • 370 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl2 0.85 (6) 2.37 (7) 3.178 (6) 160 (6)
C2—H2⋯Cl3i 0.82 (7) 2.77 (7) 3.552 (8) 160 (4)
C5—H5C⋯S1 0.96 2.75 3.402 (9) 126
C7—H7A⋯S1 0.96 2.68 3.409 (8) 133
C10—H10⋯Cl3ii 0.93 2.72 3.557 (7) 151
C25—H25⋯N6iii 0.93 2.60 3.502 (9) 162
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 1.2c. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Thioimidazole (N,N,S donors) and its alkyl derivatives have antithyroid activity and platelet inhibitory effects. (Fatimi et al., 1994; Iradyan et al., 1987). The literature revealed the presence of various nickel(II) complexes with phenanthroline (Suescun et al., 1999; Yu et al. (2003); Fang & Dai, 2006; Chen et al., 2007) but none with N-tert-butyl-2-thioimidazole, except the one reported recently (Senda et al., 2006). The present work reports the first structure of a nickel(II) complex with N-tert-butyl-2-thioimidazole and 1,10 phenanthroline, containing a tetrahedral anion, [Ni(tm)(Cl)3]-, and an octahedral cation, [Ni(phen)3]2+.

The title complex (I) is centrosymmetric, ionic in nature and comprises of one complex cation [Ni(phen)3]2+ and two complex anions [Ni(tm)(Cl)3]- in the unit cell (Fig. 1). The metal centre in [Ni(phen)3]2+ is in an octahedral environment, the equatorial plane of which is formed by four phen nitrogen atoms, and the axial positions are occupied by another two nitrogen atoms of phen, with Ni1—N bond distances in the range of 2.079 (4)–2.100 (4) Å. The dihedral angles between the meanplanes of the neighboring phen rings are 77.53°, 86.07° and 85.97°. The cis-angles in the octahedron deviate only slightly from 90° and the trans angle in the axial position is almost linear i.e. 170.54 (15)°. The nickel(II) atom in the [Ni(tm)(Cl)3]- anion is coordinated by three chlorine atoms and one sulfur atom of tm in a distorted tetrahedral geometry. The Ni—Cl bond distances are in the range of 2.251 (15) to 2.275 (15) Å. In the anion the two short bond distances (Ni2—Cl3 and Ni2—Cl1 of 2.2507 (15) and 2.253 (2) Å, respectively) and two long bond distances (Ni2—S1 and Ni2—Cl2 of 2.3054 (17) and 2.2753 (16) Å, respectively) make the geometry distorted tetrahedral.

Due to the presence of several intermolecular interactions between the three chloride ions bonded to atom Ni2 and the hydrogen atoms present on the phen rings, the complex cation is linked to six complex anions (Fig. 2 and Table 1), whereas the complex anions are linked to four complex cations through C—H···Cl hydrogen bonds (Fig. 3 and Table 1). In the crystal packing of complex (I) two layers are linked by hydrogen bonds in the bc plane. The [Ni(phen)3]2+ cations and the [Ni(tm)(Cl)3]- anions interact with each other via hydrogen bonds formed by the terminally coordinated chloride ions of the complex anion (Cl1, Cl2 and Cl3) and the hydrogen atoms present on the phen ligands (Fig. 4). The two complex anions also interact with one another through ππ stacking, with a separation of ca. 3.52 Å, and intermolecular C—H···Cl and C—H···N interactions involving the hydrogen atom of the middle ring of phenanthroline and the nitrogen atom of the acetonitrile molecule present in the lattice (Table 1).

Related literature top

For general background, see: Fatimi et al. (1994); Iradyan et al. (1987); Suescun et al. (1999); Yu et al. (2003); Fang & Dai (2006); Chen et al., (2007); Senda et al. (2006). For synthesis details, see: Kister et al. (1979).

Experimental top

All the reagents were of commercial grade and were used as received. N-tert-butyl-thioimidazole (tm) was synthesized by a literature method (Kister et al., 1979). To a solution of NiCl2.6H2O (1.0 mmol) in 5 ml methanol, a methanolic solution of N-tert-butyl-2-thioimidazole (1.0 mmol) was added and the mixture stirred for 40 minutes. This mixture was then added to the solution obtained by mixing NiCl2.6H2O (1.0 mmol) in methanol with a methanolic solution of 1,10-phenanthroline (3.0 mmol). The whole reaction mixture was stirred for a further 30 minutes. The clear solution obtained was filtered and evaporated to dryness. The solid compound obtained was dissolved in acetonitrile and green single crystals, suitable for X-ray analysis, were obtained by slow evaporation at room temperature. Yield 62%. Analysis calculated for C50H48N10S2Cl6Ni3: C 48.30, H 3.86, N 11.27, S 5.15%; found: C 48.24, H 3.78, N 11.21, S 5.12%. Selected IR frequencies (KBr, ν, cm-1): 725 (s), 849 (s), 1369 (w), 1575 (m), 1623 (w), 3060 (w), 3412 (s).

Refinement top

One of the methyl groups of the tert-butyl group of N-tert-butyl-2-thioimidazole is disordered between two equally populated positions (C6 and C6A; H6A and H6A1; H6B and H6B1; H6C and H6C1). C-bound H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å and Csp3—H = 0.96 Å, and treated as riding atoms with Uiso(H) = 1.2Ueq(C). H atoms attached to the O atoms were located in a difference Fourier map and refined as riding in their as found positions, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound (I), shown with 30% probability displacement ellipsoids [H atoms have been omitted for clarity; Symmetry code: (i) -x, y, 0.5 - z.]
[Figure 2] Fig. 2. A view of the intermolecular C—H···Cl interactions involving the [Ni(phen)3]+ cation.
[Figure 3] Fig. 3. A view of the intermolecular ππ stacking and C—H···Cl interactions involving the [Ni(tm)(Cl)3]- anion.
[Figure 4] Fig. 4. A view along the b axis of the crystal packing of complex (I), showing the interaction between two layers.
tris(1,10-phenanthroline-κ2N,N')nickel(II) bis{[1-tert-butylimidazole-2(3H)-thione-κS]trichloridonickelate(II)} acetonitrile disolvate top
Crystal data top
[Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2C2H3NF(000) = 2720
Mr = 1324.04Dx = 1.511 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5736 reflections
a = 22.8953 (15) Åθ = 1.7–25.1°
b = 15.2934 (10) ŵ = 1.36 mm1
c = 19.9417 (19) ÅT = 298 K
β = 123.543 (3)°Block, green
V = 5819.7 (8) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5178 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.737, Tmax = 0.792k = 1717
30921 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0987P)2 + 2.7947P]
where P = (Fo2 + 2Fc2)/3
5178 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 1.24 e Å3
3 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2C2H3NV = 5819.7 (8) Å3
Mr = 1324.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.8953 (15) ŵ = 1.36 mm1
b = 15.2934 (10) ÅT = 298 K
c = 19.9417 (19) Å0.24 × 0.20 × 0.18 mm
β = 123.543 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5178 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3346 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.792Rint = 0.076
30921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.24 e Å3
5178 reflectionsΔρmin = 0.55 e Å3
370 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.000000.00042 (5)0.250000.0324 (3)
N10.0571 (2)0.1054 (2)0.3259 (2)0.0353 (12)
N20.0560 (2)0.0924 (2)0.3397 (2)0.0402 (12)
N30.0611 (2)0.0069 (3)0.2013 (2)0.0394 (12)
C80.1142 (3)0.1047 (4)0.3998 (3)0.0432 (17)
C90.1465 (3)0.1812 (4)0.4422 (3)0.0543 (19)
C100.1193 (3)0.2601 (4)0.4082 (4)0.060 (2)
C110.0597 (3)0.2640 (3)0.3294 (3)0.048 (2)
C120.0304 (2)0.1842 (3)0.2905 (3)0.0359 (17)
C130.0280 (3)0.3432 (4)0.2882 (4)0.065 (3)
C140.1128 (3)0.1368 (3)0.3578 (3)0.0534 (19)
C150.1476 (4)0.1940 (4)0.4220 (4)0.069 (2)
C160.1245 (4)0.2030 (4)0.4708 (4)0.071 (2)
C170.0649 (3)0.1584 (3)0.4557 (3)0.0542 (19)
C180.0313 (3)0.1036 (3)0.3870 (3)0.0424 (17)
C190.1208 (3)0.0335 (4)0.2245 (3)0.0503 (17)
C200.1528 (3)0.0259 (4)0.1814 (4)0.066 (3)
C210.1223 (4)0.0231 (5)0.1145 (4)0.068 (3)
C220.0604 (3)0.0683 (4)0.0887 (4)0.058 (2)
C230.0315 (3)0.0582 (3)0.1348 (3)0.0410 (17)
C240.0231 (4)0.1241 (5)0.0183 (4)0.072 (3)
C250.0359 (4)0.1657 (4)0.0022 (4)0.071 (3)
Ni20.29979 (3)0.96924 (4)0.47969 (4)0.0434 (2)
Cl10.25801 (8)0.97552 (11)0.55872 (9)0.0625 (6)
Cl20.27465 (7)0.88260 (10)0.37416 (8)0.0583 (5)
Cl30.27772 (7)1.10207 (9)0.42193 (8)0.0528 (5)
S10.41282 (7)0.93790 (9)0.58439 (8)0.0452 (4)
N40.4404 (2)0.8996 (3)0.4710 (3)0.0408 (16)
N50.5332 (2)0.8910 (3)0.5920 (2)0.0381 (12)
C10.4636 (3)0.9081 (3)0.5493 (3)0.0359 (17)
C20.5514 (3)0.8728 (4)0.5376 (3)0.0479 (19)
C30.4945 (3)0.8778 (4)0.4641 (3)0.0481 (17)
C40.5832 (3)0.8870 (4)0.6823 (3)0.0452 (17)
C50.5869 (4)0.9750 (4)0.7181 (4)0.089 (3)
C60.6584 (6)0.8705 (16)0.7056 (9)0.093 (6)0.75 (3)
C70.5581 (4)0.8178 (5)0.7141 (4)0.077 (3)
C6A0.643 (2)0.830 (4)0.695 (3)0.093 (6)0.25 (3)
N60.3858 (4)0.7541 (4)0.3045 (4)0.091 (3)
C260.3366 (4)0.7841 (4)0.2533 (4)0.066 (3)
C270.2734 (4)0.8224 (5)0.1875 (5)0.093 (3)
H80.133500.051200.424200.0520*
H90.186700.178100.494000.0650*
H100.140000.311300.436800.0720*
H130.046400.396200.314500.0780*
H140.130000.129000.325500.0640*
H150.186200.225500.431300.0830*
H160.148700.239500.515400.0860*
H190.142100.067900.270700.0600*
H200.194800.054600.199200.0790*
H210.142700.027000.085200.0810*
H240.040900.131300.013500.0870*
H250.058400.200200.048300.0850*
H20.593 (3)0.867 (3)0.555 (3)0.036 (14)*
H30.486 (3)0.868 (4)0.409 (4)0.061 (16)*
H5A0.595701.019200.690500.1340*
H5B0.624100.975100.774100.1340*
H40.397 (3)0.897 (3)0.435 (3)0.039 (15)*
H6A0.674400.920000.690400.1380*0.75 (3)
H6B0.659300.819300.678300.1380*0.75 (3)
H6C0.688600.861900.762700.1380*0.75 (3)
H7A0.509600.827500.693500.1160*
H7B0.585200.820400.771800.1160*
H7C0.563600.761300.697300.1160*
H5C0.543300.987000.712500.1340*
H6A10.669900.862600.679400.1380*0.25 (3)
H6A20.624300.778700.662200.1380*0.25 (3)
H6A30.672600.814100.750300.1380*0.25 (3)
H27A0.249700.853100.207900.1400*
H27B0.243400.777200.151400.1400*
H27C0.284700.862500.159300.1400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0334 (5)0.0360 (5)0.0257 (5)0.00000.0151 (4)0.0000
N10.035 (2)0.042 (2)0.028 (2)0.0003 (18)0.0168 (19)0.0034 (18)
N20.042 (2)0.035 (2)0.034 (2)0.0035 (19)0.015 (2)0.0018 (17)
N30.039 (2)0.042 (2)0.036 (2)0.0011 (19)0.020 (2)0.0032 (18)
C80.035 (3)0.060 (3)0.030 (3)0.001 (2)0.015 (2)0.005 (2)
C90.046 (3)0.081 (4)0.034 (3)0.016 (3)0.021 (3)0.019 (3)
C100.077 (4)0.062 (4)0.055 (4)0.023 (3)0.045 (4)0.029 (3)
C110.062 (4)0.046 (3)0.051 (4)0.010 (3)0.041 (3)0.014 (3)
C120.043 (3)0.040 (3)0.035 (3)0.003 (2)0.028 (2)0.004 (2)
C130.092 (5)0.039 (3)0.087 (5)0.016 (3)0.064 (4)0.015 (3)
C140.042 (3)0.043 (3)0.057 (4)0.007 (3)0.016 (3)0.001 (3)
C150.062 (4)0.050 (4)0.063 (4)0.008 (3)0.014 (4)0.007 (3)
C160.069 (4)0.043 (3)0.046 (4)0.000 (3)0.003 (3)0.014 (3)
C170.063 (4)0.039 (3)0.034 (3)0.014 (3)0.010 (3)0.005 (2)
C180.047 (3)0.033 (3)0.035 (3)0.009 (2)0.015 (3)0.001 (2)
C190.044 (3)0.057 (3)0.051 (3)0.001 (3)0.027 (3)0.002 (3)
C200.053 (4)0.085 (5)0.078 (5)0.008 (3)0.047 (4)0.015 (4)
C210.074 (5)0.091 (5)0.064 (5)0.021 (4)0.054 (4)0.018 (4)
C220.077 (4)0.059 (3)0.051 (4)0.034 (3)0.043 (3)0.016 (3)
C230.049 (3)0.040 (3)0.034 (3)0.014 (2)0.023 (3)0.005 (2)
C240.105 (6)0.078 (4)0.051 (4)0.027 (4)0.054 (4)0.000 (3)
C250.104 (6)0.059 (4)0.041 (4)0.022 (4)0.035 (4)0.005 (3)
Ni20.0394 (4)0.0561 (4)0.0325 (4)0.0045 (3)0.0185 (3)0.0031 (3)
Cl10.0540 (9)0.0980 (12)0.0409 (8)0.0098 (8)0.0297 (7)0.0020 (7)
Cl20.0496 (8)0.0748 (10)0.0400 (8)0.0050 (7)0.0181 (7)0.0152 (7)
Cl30.0476 (8)0.0590 (8)0.0495 (9)0.0008 (6)0.0254 (7)0.0015 (6)
S10.0413 (7)0.0626 (8)0.0318 (7)0.0068 (6)0.0203 (6)0.0018 (6)
N40.042 (3)0.053 (3)0.026 (2)0.000 (2)0.018 (2)0.0013 (19)
N50.039 (2)0.051 (2)0.026 (2)0.0010 (19)0.019 (2)0.0021 (18)
C10.041 (3)0.040 (3)0.027 (3)0.001 (2)0.019 (2)0.002 (2)
C20.039 (3)0.067 (4)0.043 (3)0.004 (3)0.026 (3)0.003 (3)
C30.051 (3)0.061 (3)0.040 (3)0.003 (3)0.030 (3)0.000 (3)
C40.040 (3)0.065 (3)0.029 (3)0.004 (3)0.018 (2)0.006 (2)
C50.096 (6)0.076 (5)0.040 (4)0.009 (4)0.003 (4)0.008 (3)
C60.036 (6)0.183 (16)0.043 (6)0.002 (7)0.012 (6)0.004 (9)
C70.080 (5)0.091 (5)0.050 (4)0.001 (4)0.029 (4)0.023 (3)
C6A0.036 (6)0.183 (16)0.043 (6)0.002 (7)0.012 (6)0.004 (9)
N60.103 (5)0.105 (5)0.062 (4)0.008 (4)0.043 (4)0.005 (4)
C260.088 (5)0.066 (4)0.054 (4)0.010 (4)0.045 (4)0.002 (3)
C270.099 (6)0.080 (5)0.073 (5)0.004 (4)0.030 (5)0.006 (4)
Geometric parameters (Å, º) top
Ni1—N12.095 (3)C21—C221.395 (12)
Ni1—N22.079 (3)C22—C241.450 (10)
Ni1—N32.101 (5)C22—C231.407 (10)
Ni1—N1i2.095 (3)C24—C251.337 (13)
Ni1—N2i2.079 (3)C8—H80.9300
Ni1—N3i2.101 (5)C9—H90.9300
Ni2—Cl22.2753 (16)C10—H100.9300
Ni2—Cl32.2507 (15)C13—H130.9300
Ni2—S12.3054 (17)C14—H140.9300
Ni2—Cl12.253 (2)C15—H150.9300
S1—C11.717 (7)C16—H160.9300
N1—C81.324 (7)C19—H190.9300
N1—C121.359 (6)C20—H200.9300
N2—C181.352 (8)C21—H210.9300
N2—C141.328 (8)C24—H240.9300
N3—C231.357 (6)C25—H250.9300
N3—C191.329 (9)C2—C31.320 (8)
N4—C11.349 (7)C4—C51.504 (9)
N4—C31.361 (9)C4—C6A1.52 (6)
N5—C11.354 (8)C4—C61.536 (19)
N5—C21.388 (8)C4—C71.502 (11)
N5—C41.510 (6)C2—H20.82 (7)
N4—H40.85 (6)C3—H31.02 (7)
N6—C261.118 (11)C5—H5A0.9600
C8—C91.393 (8)C5—H5B0.9600
C9—C101.355 (9)C5—H5C0.9600
C10—C111.402 (9)C6—H6A0.9600
C11—C121.402 (7)C6—H6B0.9600
C11—C131.418 (8)C6—H6C0.9600
C12—C12i1.436 (7)C6A—H6A20.9600
C13—C13i1.344 (10)C6A—H6A30.9500
C14—C151.383 (8)C6A—H6A10.9700
C15—C161.347 (13)C7—H7B0.9600
C16—C171.401 (12)C7—H7C0.9600
C17—C181.417 (7)C7—H7A0.9600
C17—C25i1.412 (12)C26—C271.435 (12)
C18—C23i1.431 (10)C27—H27A0.9600
C19—C201.409 (10)C27—H27B0.9600
C20—C211.341 (10)C27—H27C0.9600
N1—Ni1—N293.42 (13)C8—C9—H9120.00
N1—Ni1—N393.77 (18)C11—C10—H10120.00
N1—Ni1—N1i79.98 (13)C9—C10—H10120.00
N1—Ni1—N2i170.55 (15)C13i—C13—H13119.00
N1—Ni1—N3i90.91 (18)C11—C13—H13119.00
N2—Ni1—N396.30 (18)N2—C14—H14118.00
N1i—Ni1—N2170.55 (15)C15—C14—H14118.00
N2—Ni1—N2i93.90 (13)C14—C15—H15121.00
N2—Ni1—N3i79.49 (18)C16—C15—H15121.00
N1i—Ni1—N390.91 (18)C17—C16—H16120.00
N2i—Ni1—N379.49 (18)C15—C16—H16119.00
N3—Ni1—N3i173.89 (18)N3—C19—H19119.00
N1i—Ni1—N2i93.42 (13)C20—C19—H19119.00
N1i—Ni1—N3i93.77 (18)C19—C20—H20120.00
N2i—Ni1—N3i96.30 (18)C21—C20—H20120.00
Cl1—Ni2—Cl2133.14 (7)C20—C21—H21120.00
Cl1—Ni2—Cl3104.92 (7)C22—C21—H21120.00
Cl1—Ni2—S194.21 (6)C25—C24—H24119.00
Cl2—Ni2—Cl3100.47 (6)C22—C24—H24119.00
Cl2—Ni2—S1107.47 (6)C24—C25—H25119.00
Cl3—Ni2—S1118.25 (6)C17i—C25—H25119.00
Ni2—S1—C1111.11 (19)N4—C1—N5106.5 (6)
Ni1—N1—C8129.5 (3)S1—C1—N5128.4 (4)
Ni1—N1—C12112.5 (3)S1—C1—N4125.1 (5)
C8—N1—C12118.0 (4)N5—C2—C3108.5 (6)
C14—N2—C18118.0 (4)N4—C3—C2107.3 (6)
Ni1—N2—C18112.9 (4)N5—C4—C6110.6 (7)
Ni1—N2—C14128.9 (4)N5—C4—C5109.7 (5)
Ni1—N3—C19129.3 (4)C5—C4—C6104.1 (10)
C19—N3—C23118.1 (5)C5—C4—C7111.4 (6)
Ni1—N3—C23112.5 (4)C5—C4—C6A129 (2)
C1—N4—C3110.0 (5)C6—C4—C7112.5 (10)
C2—N5—C4124.5 (5)C6A—C4—C793 (2)
C1—N5—C2107.7 (4)N5—C4—C7108.5 (5)
C1—N5—C4127.7 (5)N5—C4—C6A104.0 (19)
C1—N4—H4121 (5)N5—C2—H2118 (4)
C3—N4—H4128 (5)C3—C2—H2133 (4)
N1—C8—C9122.4 (5)N4—C3—H3120 (4)
C8—C9—C10120.1 (5)C2—C3—H3132 (4)
C9—C10—C11119.5 (5)C4—C5—H5A109.00
C10—C11—C12117.1 (5)C4—C5—H5B110.00
C12—C11—C13119.2 (5)C4—C5—H5C110.00
C10—C11—C13123.7 (5)H5A—C5—H5B109.00
N1—C12—C12i117.6 (4)H5A—C5—H5C109.00
N1—C12—C11123.0 (5)H5B—C5—H5C109.00
C11—C12—C12i119.5 (4)C4—C6—H6A110.00
C11—C13—C13i121.3 (6)C4—C6—H6B110.00
N2—C14—C15123.5 (7)C4—C6—H6C109.00
C14—C15—C16118.6 (8)H6A—C6—H6B109.00
C15—C16—C17121.3 (6)H6A—C6—H6C109.00
C16—C17—C18116.1 (6)H6B—C6—H6C109.00
C18—C17—C25i118.7 (6)C4—C6A—H6A2110.00
C16—C17—C25i125.2 (5)C4—C6A—H6A3110.00
N2—C18—C23i117.6 (4)H6A1—C6A—H6A2109.00
N2—C18—C17122.5 (6)H6A1—C6A—H6A3109.00
C17—C18—C23i119.9 (6)H6A2—C6A—H6A3110.00
N3—C19—C20122.1 (5)C4—C6A—H6A1109.00
C19—C20—C21119.5 (7)H7B—C7—H7C109.00
C20—C21—C22120.5 (8)C4—C7—H7A109.00
C21—C22—C23117.0 (6)C4—C7—H7B109.00
C21—C22—C24125.7 (8)C4—C7—H7C109.00
C23—C22—C24117.3 (7)H7A—C7—H7B110.00
N3—C23—C18i116.9 (6)H7A—C7—H7C110.00
C18i—C23—C22120.3 (5)N6—C26—C27179.9 (12)
N3—C23—C22122.8 (6)C26—C27—H27A109.00
C22—C24—C25122.1 (8)C26—C27—H27B110.00
C17i—C25—C24121.6 (6)C26—C27—H27C110.00
N1—C8—H8119.00H27A—C27—H27B109.00
C9—C8—H8119.00H27A—C27—H27C110.00
C10—C9—H9120.00H27B—C27—H27C109.00
N2—Ni1—N1—C88.6 (6)C1—N5—C2—C30.6 (7)
N3—Ni1—N1—C887.9 (6)C4—N5—C2—C3176.5 (5)
N1i—Ni1—N1—C8178.2 (6)C2—N5—C1—N40.5 (6)
N3i—Ni1—N1—C888.2 (6)C2—N5—C4—C7117.4 (7)
N2—Ni1—N1—C12173.1 (4)C1—N5—C4—C759.2 (8)
N3—Ni1—N1—C1290.3 (4)C4—N5—C1—N4176.5 (5)
N1i—Ni1—N1—C120.1 (4)C2—N5—C1—S1177.8 (4)
N3i—Ni1—N1—C1293.6 (4)C2—N5—C4—C5120.8 (7)
N1—Ni1—N2—C1492.3 (4)C1—N5—C4—C6176.9 (11)
N3—Ni1—N2—C141.9 (4)C2—N5—C4—C66.5 (12)
N2i—Ni1—N2—C1481.7 (4)N1—C8—C9—C100.5 (11)
N3i—Ni1—N2—C14177.4 (4)C8—C9—C10—C111.8 (11)
N1—Ni1—N2—C1884.0 (3)C9—C10—C11—C121.4 (11)
N3—Ni1—N2—C18178.2 (3)C9—C10—C11—C13179.0 (7)
N2i—Ni1—N2—C18102.0 (3)C12—C11—C13—C13i2.3 (11)
N3i—Ni1—N2—C186.3 (3)C10—C11—C12—N10.2 (10)
N1—Ni1—N3—C199.7 (5)C13—C11—C12—C12i0.9 (10)
N2—Ni1—N3—C1984.2 (5)C10—C11—C12—C12i179.6 (6)
N1i—Ni1—N3—C1989.7 (5)C13—C11—C12—N1179.4 (6)
N2i—Ni1—N3—C19177.0 (5)C10—C11—C13—C13i178.1 (8)
N1—Ni1—N3—C23167.3 (3)N1—C12—C12i—C11i180.0 (6)
N2—Ni1—N3—C2398.9 (3)C11—C12—C12i—N1i180.0 (6)
N1i—Ni1—N3—C2387.3 (3)N1—C12—C12i—N1i0.3 (8)
N2i—Ni1—N3—C236.1 (3)C11—C12—C12i—C11i0.2 (9)
Cl3—Ni2—S1—C181.0 (2)C11—C13—C13i—C11i3.1 (12)
Cl1—Ni2—S1—C1169.56 (19)N2—C14—C15—C162.6 (9)
Cl2—Ni2—S1—C131.7 (2)C14—C15—C16—C172.5 (10)
Ni2—S1—C1—N43.1 (5)C15—C16—C17—C25i178.2 (6)
Ni2—S1—C1—N5175.0 (4)C15—C16—C17—C180.4 (9)
Ni1—N1—C8—C9179.3 (5)C18—C17—C25i—C24i1.8 (9)
C8—N1—C12—C12i178.3 (6)C16—C17—C25i—C24i176.8 (7)
Ni1—N1—C12—C11180.0 (5)C16—C17—C18—C23i177.6 (5)
C12—N1—C8—C91.1 (10)C25i—C17—C18—N2179.4 (5)
Ni1—N1—C12—C12i0.2 (6)C25i—C17—C18—C23i1.1 (8)
C8—N1—C12—C111.5 (9)C16—C17—C18—N21.9 (8)
Ni1—N2—C18—C23i5.6 (5)C17—C18—C23i—C22i0.5 (8)
C14—N2—C18—C172.0 (7)N2—C18—C23i—N3i0.4 (7)
Ni1—N2—C18—C17174.8 (4)C17—C18—C23i—N3i179.9 (5)
Ni1—N2—C14—C15176.6 (4)N2—C18—C23i—C22i179.0 (5)
C14—N2—C18—C23i177.6 (4)N3—C19—C20—C210.4 (10)
C18—N2—C14—C150.4 (7)C19—C20—C21—C221.8 (10)
Ni1—N3—C19—C20175.5 (4)C20—C21—C22—C24179.1 (7)
C23—N3—C19—C201.3 (8)C20—C21—C22—C231.4 (10)
C19—N3—C23—C221.7 (8)C24—C22—C23—C18i1.5 (8)
Ni1—N3—C23—C18i5.0 (6)C21—C22—C23—N30.4 (9)
C19—N3—C23—C18i177.6 (5)C24—C22—C23—N3179.2 (5)
Ni1—N3—C23—C22175.6 (4)C23—C22—C24—C250.9 (10)
C3—N4—C1—N50.3 (6)C21—C22—C24—C25179.6 (7)
C3—N4—C1—S1178.2 (4)C21—C22—C23—C18i179.0 (6)
C1—N4—C3—C20.1 (7)C22—C24—C25—C17i0.8 (11)
C4—N5—C1—S15.2 (8)N5—C2—C3—N40.5 (7)
C1—N5—C4—C562.7 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.85 (6)2.37 (7)3.178 (6)160 (6)
C2—H2···Cl3ii0.82 (7)2.77 (7)3.552 (8)160 (4)
C5—H5C···S10.962.753.402 (9)126
C7—H7A···S10.962.683.409 (8)133
C10—H10···Cl3iii0.932.723.557 (7)151
C25—H25···N6iv0.932.603.502 (9)162
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2C2H3N
Mr1324.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.8953 (15), 15.2934 (10), 19.9417 (19)
β (°) 123.543 (3)
V3)5819.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.737, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
30921, 5178, 3346
Rint0.076
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.07
No. of reflections5178
No. of parameters370
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.85 (6)2.37 (7)3.178 (6)160 (6)
C2—H2···Cl3i0.82 (7)2.77 (7)3.552 (8)160 (4)
C5—H5C···S10.962.753.402 (9)126
C7—H7A···S10.962.683.409 (8)133
C10—H10···Cl3ii0.932.723.557 (7)151
C25—H25···N6iii0.932.603.502 (9)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the CSIR, New Delhi, for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Version 1.2c. University of Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166–m168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, H. & Dai, X. (2006). Acta Cryst. E62, m3565–m3566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFatimi, J., Lagorce, J. F., Chabernaud, M. L., Buxeraud, J. & Raby, C. (1994). Boll. Chim. Farm. 133, 151–155.  CAS PubMed Google Scholar
First citationIradyan, M. A., Ayvazyan, A. K., Mirzoyan, V. S., Paronikyan, G. M., Sarkisyan, T. P., Stepanyan, G. M., Arsenyan, F. G. & Garibdzhanyan, B. T. (1987). Pharm. Chem. J. 21, 403–408.  CrossRef Google Scholar
First citationKister, J., Assef, G., Miller, G. & Metzer, J. (1979). Can. J. Chem. 57, 813–821.  CrossRef CAS Web of Science Google Scholar
First citationSenda, S., Ohki, Y., Hirayama, T., Toda, D., Chen, J.-L., Matsumoto, T., Kawaguchi, H. & Tatsumi, K. (2006). Inorg. Chem. 45, 9914–9925.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuescun, L., Mombrú, A. W. & Mariezcurrena, R. A. (1999). Acta Cryst. C55, 1991–1993.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, J.-H., Jia, H.-B., Pan, L.-Y., Yang, Q.-X., Wang, T.-G., Xu, J.-Q., Cui, X.-B., Liu, Y.-J., Li, Y.-Z., Lu, C.-H. & Ma, T.-H. (2003). J. Solid State Chem. 175, 152–158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m935-m936
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds