metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Bromo-2-[2-(methyl­amino­)ethyl­iminometh­yl]phenolato}thio­cyanato­copper(II)

aChemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China, and Department of Chemistry, Pingdingshan University, Henan 467000, People's Republic of China
*Correspondence e-mail: junying-ma@163.com

(Received 5 April 2008; accepted 30 May 2008; online 7 June 2008)

In the title mononuclear copper(II) complex, [Cu(C10H12BrN2O)(NCS)], the CuII ion is coordinated by two N atoms and one O atom from a Schiff base ligand, and by one N atom from a thio­cyanate anion, giving a square-planar geometry. In the crystal structure, symmetry-related mol­ecules are linked by an N—H⋯S hydrogen bond.

Related literature

For related literature, see: Diao & Li (2007[Diao, Y.-P. & Li, K. (2007). Acta Cryst. E63, m2496-m2497.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Ma et al. (2005[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695-m696.]); Ma, Gu et al. (2006[Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.]); Ma, Lv et al. (2006[Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.]); Ma, Wu et al. (2006[Ma, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53-54.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m2629.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H12BrN2O)(NCS)]

  • Mr = 377.75

  • Monoclinic, P 21 /n

  • a = 5.952 (3) Å

  • b = 19.660 (3) Å

  • c = 12.718 (2) Å

  • β = 94.331 (3)°

  • V = 1484.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.30 mm−1

  • T = 298 (2) K

  • 0.32 × 0.32 × 0.31 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.259, Tmax = 0.267

  • 11246 measured reflections

  • 2997 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.180

  • S = 1.11

  • 2997 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 1.68 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.91 2.76 3.635 (9) 162
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported on teh crystal structure alanyses of some metal complexes derived from Schiff base ligands (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, Wu et al., 2006; Ma et al., 2005). As part of a further investigation of the structures of such complexes, the title mononuclear copper(II) complex, (I), is reported on here.

In complex (I), the Cu atom is coordinated by two nitrogen atoms and one oxygen atom from a Schiff base ligand, and by one nitrogen atom from a thiocyanate anion, giving a square planar geometry (Fig. 1). All the bond lengths and angles related to the Cu atom in the complex are within normal ranges, and comparable to the values observed in other similar copper(II) complexes (Wei et al., 2007; Diao et al., 2007; Diao & Li, 2007). The four coordinating atoms around the Cu centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.090 (5) Å; the Cu atom lies 0.095 (2) Å above this plane. The C8—C9—N2—C10 torsion angle is 1.5 (3)°.

In the crystal structure of compound (I) symmetry related molecules are linked by an N—H···S hydrogen bond (Table 1).

Related literature top

For related literature, see: Diao & Li (2007); Diao et al. (2007); Ma et al. (2005); Ma, Gu et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006); Wei et al. (2007).

Experimental top

N-Methylethane-1,2-diamine (0.5 mmol, 37.0 mg) and 5-bromosalicylaldehyde (0.5 mmol, 100.5 mg) were dissolved in methanol (30 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To this solution was added with stirring a methanol solution (20 ml) of copper(II) acetate (0.5 mmol, 99.6 mg) and a methanol solution (10 ml) of ammonium thiocyanate (0.5 mmol, 38.0 mg). After keeping the resulting solution in air for a few days, blue block-shaped crystals were formed.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.2 or 1.5Ueq(C). An unassigned maximum residual density (1.68 Å3) was observed 1.03 Å from Br1, which is due to the tail-effects of the heavy atom Br1. The structure contains solvent accessible voids of 119 Å3, which may perhaps accommodate a partially occupied solvent molecule.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atomic numbering scheme and the displacement ellipsoids drawn at the 30% probability level.
{4-Bromo-2-[2-(methylamino)ethyliminomethyl]phenolato}thiocyanatocopper(II) top
Crystal data top
[Cu(C10H12BrN2O)(NCS)]F(000) = 748
Mr = 377.75Dx = 1.691 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1708 reflections
a = 5.952 (3) Åθ = 2.5–25.3°
b = 19.660 (3) ŵ = 4.30 mm1
c = 12.718 (2) ÅT = 298 K
β = 94.331 (3)°Block, blue
V = 1484.0 (8) Å30.32 × 0.32 × 0.31 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2997 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scanθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.259, Tmax = 0.267k = 2424
11246 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0672P)2 + 4.7203P]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 1.68 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Cu(C10H12BrN2O)(NCS)]V = 1484.0 (8) Å3
Mr = 377.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.952 (3) ŵ = 4.30 mm1
b = 19.660 (3) ÅT = 298 K
c = 12.718 (2) Å0.32 × 0.32 × 0.31 mm
β = 94.331 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2997 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1875 reflections with I > 2σ(I)
Tmin = 0.259, Tmax = 0.267Rint = 0.071
11246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.11Δρmax = 1.68 e Å3
2997 reflectionsΔρmin = 0.84 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77313 (15)0.20764 (5)0.04645 (8)0.0407 (3)
N11.0514 (10)0.1635 (3)0.0963 (5)0.0392 (15)
N20.8291 (12)0.2634 (4)0.1796 (7)0.058 (2)
H2A0.76450.23930.23040.070*
N30.4927 (12)0.2539 (4)0.0002 (6)0.053 (2)
O10.7104 (8)0.1410 (3)0.0588 (4)0.0460 (14)
S10.0695 (4)0.29376 (15)0.0863 (2)0.0664 (8)
Br11.31654 (16)0.06412 (5)0.23999 (9)0.0633 (4)
C11.1328 (13)0.0028 (4)0.1792 (7)0.044 (2)
C20.9203 (14)0.0131 (4)0.2253 (8)0.049 (2)
H20.87120.01210.28450.059*
C30.7799 (13)0.0596 (4)0.1860 (7)0.047 (2)
H30.63600.06570.21840.057*
C40.8518 (13)0.0994 (4)0.0946 (6)0.0367 (18)
C51.0688 (12)0.0860 (4)0.0492 (6)0.0369 (18)
C61.2068 (14)0.0376 (4)0.0913 (7)0.045 (2)
H61.34970.02910.05920.054*
C71.1533 (13)0.1183 (4)0.0480 (7)0.042 (2)
H71.29410.10470.07730.051*
C81.1509 (15)0.1902 (5)0.1982 (7)0.052 (2)
H8A1.31400.18890.19970.062*
H8B1.10380.16250.25570.062*
C91.0734 (14)0.2612 (5)0.2099 (7)0.051 (2)
H9A1.10280.27600.28240.061*
H9B1.15310.29120.16500.061*
C100.7370 (17)0.3305 (6)0.1855 (10)0.083 (4)
H10A0.80010.35260.24820.125*
H10B0.57630.32760.18740.125*
H10C0.77280.35620.12480.125*
C110.3146 (15)0.2696 (4)0.0378 (7)0.048 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0271 (5)0.0511 (6)0.0429 (6)0.0011 (4)0.0028 (4)0.0086 (5)
N10.028 (3)0.047 (4)0.041 (4)0.004 (3)0.006 (3)0.001 (3)
N20.040 (4)0.062 (5)0.070 (5)0.001 (4)0.005 (4)0.022 (4)
N30.030 (4)0.069 (5)0.058 (5)0.008 (3)0.006 (3)0.015 (4)
O10.025 (3)0.055 (4)0.056 (4)0.006 (3)0.009 (2)0.012 (3)
S10.0412 (13)0.0813 (18)0.0744 (18)0.0000 (13)0.0115 (12)0.0316 (15)
Br10.0480 (6)0.0520 (6)0.0910 (8)0.0037 (4)0.0131 (5)0.0149 (5)
C10.036 (4)0.030 (4)0.068 (6)0.003 (3)0.014 (4)0.002 (4)
C20.035 (5)0.045 (5)0.066 (6)0.005 (4)0.001 (4)0.009 (4)
C30.029 (4)0.047 (5)0.064 (6)0.000 (4)0.014 (4)0.007 (4)
C40.031 (4)0.033 (4)0.044 (5)0.001 (3)0.006 (3)0.002 (4)
C50.029 (4)0.040 (4)0.041 (5)0.004 (3)0.004 (3)0.013 (4)
C60.042 (5)0.037 (4)0.057 (5)0.000 (4)0.002 (4)0.007 (4)
C70.028 (4)0.043 (5)0.055 (5)0.003 (4)0.007 (4)0.015 (4)
C80.048 (5)0.065 (6)0.039 (5)0.011 (4)0.017 (4)0.003 (4)
C90.039 (5)0.075 (6)0.038 (5)0.006 (4)0.002 (4)0.022 (5)
C100.051 (6)0.092 (8)0.106 (9)0.038 (6)0.005 (6)0.039 (7)
C110.042 (5)0.051 (5)0.050 (5)0.015 (4)0.001 (4)0.004 (4)
Geometric parameters (Å, º) top
Cu1—O11.890 (5)C2—H20.9300
Cu1—N11.934 (6)C3—C41.439 (11)
Cu1—N31.952 (7)C3—H30.9300
Cu1—N22.024 (7)C4—C51.399 (10)
N1—C71.262 (10)C5—C61.390 (11)
N1—C81.479 (10)C5—C71.446 (12)
N2—C101.432 (12)C6—H60.9300
N2—C91.476 (11)C7—H70.9300
N2—H2A0.9100C8—C91.481 (12)
N3—C111.172 (11)C8—H8A0.9700
O1—C41.282 (9)C8—H8B0.9700
S1—C111.612 (10)C9—H9A0.9700
Br1—C11.911 (8)C9—H9B0.9700
C1—C61.356 (12)C10—H10A0.9600
C1—C21.368 (12)C10—H10B0.9600
C2—C31.358 (12)C10—H10C0.9600
O1—Cu1—N192.3 (3)C6—C5—C4121.6 (8)
O1—Cu1—N389.5 (3)C6—C5—C7116.9 (7)
N1—Cu1—N3178.1 (3)C4—C5—C7121.4 (7)
O1—Cu1—N2168.3 (3)C1—C6—C5119.9 (8)
N1—Cu1—N283.4 (3)C1—C6—H6120.1
N3—Cu1—N294.7 (3)C5—C6—H6120.1
C7—N1—C8120.0 (7)N1—C7—C5125.2 (7)
C7—N1—Cu1126.0 (5)N1—C7—H7117.4
C8—N1—Cu1113.9 (5)C5—C7—H7117.4
C10—N2—C9112.8 (8)N1—C8—C9108.4 (7)
C10—N2—Cu1120.2 (7)N1—C8—H8A110.0
C9—N2—Cu1107.4 (5)C9—C8—H8A110.0
C10—N2—H2A105.0N1—C8—H8B110.0
C9—N2—H2A105.0C9—C8—H8B110.0
Cu1—N2—H2A105.0H8A—C8—H8B108.4
C11—N3—Cu1166.5 (7)N2—C9—C8108.1 (7)
C4—O1—Cu1126.5 (5)N2—C9—H9A110.1
C6—C1—C2120.7 (8)C8—C9—H9A110.1
C6—C1—Br1121.4 (6)N2—C9—H9B110.1
C2—C1—Br1117.9 (7)C8—C9—H9B110.1
C3—C2—C1121.1 (8)H9A—C9—H9B108.4
C3—C2—H2119.4N2—C10—H10A109.5
C1—C2—H2119.4N2—C10—H10B109.5
C2—C3—C4120.6 (7)H10A—C10—H10B109.5
C2—C3—H3119.7N2—C10—H10C109.5
C4—C3—H3119.7H10A—C10—H10C109.5
O1—C4—C5125.7 (7)H10B—C10—H10C109.5
O1—C4—C3118.1 (7)N3—C11—S1177.5 (9)
C5—C4—C3116.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.912.763.635 (9)162
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H12BrN2O)(NCS)]
Mr377.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.952 (3), 19.660 (3), 12.718 (2)
β (°) 94.331 (3)
V3)1484.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.30
Crystal size (mm)0.32 × 0.32 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.259, 0.267
No. of measured, independent and
observed [I > 2σ(I)] reflections
11246, 2997, 1875
Rint0.071
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.181, 1.11
No. of reflections2997
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.68, 0.84

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.912.763.635 (9)162
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges support from the Scientific Research Foundation of Henan University of Science and Technology (project No. 05-072).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. & Li, K. (2007). Acta Cryst. E63, m2496–m2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2005). Acta Cryst. E61, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y., Wu, T.-X., She, X.-G. & Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53–54.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds