organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1195-o1196

S-Benzyl­thio­uronium 3-nitro­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 May 2008; accepted 28 May 2008; online 7 June 2008)

In the title compound, C8H11N2S+·C6H4NO5S, the asymmetric unit is composed of two crystallographically independent S-benzyl­thio­uronium cations and two independent nitro­benzene­sulfonate anions. An intra­molecular hydrogen bond generates an S(5)S(5) ring motif. The crystal packing is stabilized by intra­molecular C—H⋯O and inter­molecular C—H⋯O, N—H⋯O and N—H⋯S hydrogen bonds which, along with short S⋯O [3.034 (2) Å] and N⋯O [2.796 (3) Å] contacts, form a two-dimensional network parallel to the ab plane.

Related literature

For related literature on nonlinear optical materials, see: Chantrapromma et al. (2005[Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.], 2006[Chantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875-o877.]); Fun et al. (2006[Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N2S+·C6H4NO5S

  • Mr = 369.41

  • Triclinic, P 1

  • a = 6.0397 (1) Å

  • b = 7.7856 (1) Å

  • c = 17.4680 (2) Å

  • α = 81.366 (1)°

  • β = 89.322 (1)°

  • γ = 87.057 (1)°

  • V = 811.01 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100.0 (1) K

  • 0.32 × 0.19 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.986

  • 19026 measured reflections

  • 8874 independent reflections

  • 7378 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.03

  • 8874 reflections

  • 433 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4108 Friedel pairs

  • Flack parameter: −0.03 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O4i 0.86 1.97 2.796 (3) 162
N3—H1N3⋯S1i 0.86 2.84 3.694 (3) 170
N3—H2N3⋯O3ii 0.86 2.05 2.898 (3) 171
N4—H1N4⋯O3i 0.86 2.26 3.080 (3) 160
N4—H2N4⋯O5iii 0.86 2.37 3.126 (3) 146
N5—H1N5⋯O10i 0.86 1.91 2.764 (3) 176
N5—H1N5⋯S2i 0.86 2.85 3.642 (3) 154
N5—H2N5⋯O9ii 0.86 1.94 2.783 (3) 168
N6—H1N6⋯O1iii 0.86 2.27 3.072 (3) 156
N6—H2N6⋯O8iii 0.86 2.07 2.787 (3) 141
C6—H6A⋯O4 0.93 2.56 2.900 (3) 102
C8—H8A⋯O10 0.93 2.57 2.896 (4) 101
C19—H19B⋯O4iii 0.97 2.51 3.331 (4) 142
C27—H27B⋯O8iii 0.97 2.53 3.259 (4) 132
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In continuation of our research on nonlinear optical (NLO) materials (Chantrapromma et al., 2005, 2006; Fun et al., 2006; Patil, Dharmaprakash et al. (2007); Patil, Fun et al. (2007), the crystal structure determination of the title compound, (I), was undertaken in order to obtain detailed information on its three-dimensional structure and crystal packing. Since the title compound crystallizes in a non-centrosymmetric space group, it should exhibit second-order nonlinear optical properties.

In the asymmetric unit of (I) there are two crystallographically independent s-benzylthiuronium cations and two independent m-nitrobenzene sulfonate anions (Fig. 1). Bond lengths and angles are found to have normal values (Allen et al., 1987). The dihedral angle formed by the mean plane of ring (C13–C18) with the mean planes through rings (C21–C26), (C1–C6) and (C7–C12) are 57.6 (2)°, 49.9 (2)° and 46.98 (1)°, respectively. The dihedral angle formed by the mean planes of rings (C1–C6) and (C7–C12) are 3.07 (1)°, indicating that they are almost coplanar.

An intramolecular hydrogen bond generates a S(5)S(5) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by intramolecular C—H···O, intermolecular C—H···O, N—H···O and N—H···S hydrogen bonds which together with short S···O and N···O contacts, in the range 2.796 (3)–3.282 (3) Å [symmetry code: x, 1+y, z; 1+x, 1+y, z], form a two-dimensional network parrallel to the ab plane.

Related literature top

For related literature on nonlinear optical materials, see: Chantrapromma et al. (2005, 2006); Fun et al. (2006); Patil, Dharmaprakash et al. (2007); Patil, Fun et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

Compound (I) was synthesized by mixing solutions of the sodium salt of m-nitrobenzene sulfonic acid (0.5 g) in 5 ml of distilled water with 5 drops of 0.1 N HCl and S-benzylthiuronium chloride (1 g) in 5 ml of distilled water. The mixing immediately yielded a precipitate when the reaction container was placed in ice cold water. The resulting precipitate was filtered and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically [C—H = 0.93 Å; N—H = 0.86 Å and CH2 = 0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of compound (I) viewed down the c axis, showing the two-dimensional network. Short intra and intermolecular contacts and hydrogen bonds are shown as dashed lines.
(5-Methylpyrazine-2-carboxylato)diphenyltin(IV) top
Crystal data top
C8H11N2S+·C6H4NO5SZ = 2
Mr = 369.41F(000) = 384
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0397 (1) ÅCell parameters from 4354 reflections
b = 7.7856 (1) Åθ = 2.8–34.6°
c = 17.4680 (2) ŵ = 0.36 mm1
α = 81.366 (1)°T = 100 K
β = 89.322 (1)°Plate, colourless
γ = 87.057 (1)°0.32 × 0.19 × 0.04 mm
V = 811.01 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8874 independent reflections
Radiation source: fine-focus sealed tube7378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 78
Tmin = 0.894, Tmax = 0.986k = 1010
19026 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0534P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8874 reflectionsΔρmax = 0.38 e Å3
433 parametersΔρmin = 0.32 e Å3
3 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
C8H11N2S+·C6H4NO5Sγ = 87.057 (1)°
Mr = 369.41V = 811.01 (2) Å3
Triclinic, P1Z = 2
a = 6.0397 (1) ÅMo Kα radiation
b = 7.7856 (1) ŵ = 0.36 mm1
c = 17.4680 (2) ÅT = 100 K
α = 81.366 (1)°0.32 × 0.19 × 0.04 mm
β = 89.322 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7378 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.986Rint = 0.043
19026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.32 e Å3
8874 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
433 parametersAbsolute structure parameter: 0.03 (5)
3 restraints
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37546 (10)0.53723 (8)0.82205 (4)0.01444 (14)
O10.4811 (4)0.4607 (3)0.47221 (12)0.0252 (5)
O20.1931 (4)0.4114 (3)0.54531 (12)0.0241 (5)
O30.4577 (3)0.3635 (3)0.85663 (11)0.0180 (4)
O40.1377 (3)0.5430 (3)0.80849 (11)0.0184 (4)
O50.4448 (3)0.6737 (3)0.86311 (12)0.0206 (4)
N10.3820 (4)0.4617 (3)0.53419 (14)0.0193 (5)
C10.4988 (4)0.5723 (3)0.72854 (15)0.0147 (5)
C20.7020 (4)0.6478 (4)0.71677 (16)0.0167 (5)
H2A0.77100.69030.75690.020*
C30.8017 (5)0.6590 (4)0.64337 (18)0.0207 (6)
H3A0.93840.70850.63510.025*
C40.7004 (5)0.5977 (4)0.58323 (17)0.0184 (6)
H4A0.76730.60440.53470.022*
C50.4953 (5)0.5255 (4)0.59719 (16)0.0163 (5)
C60.3912 (5)0.5112 (3)0.66886 (15)0.0154 (5)
H6A0.25390.46230.67670.018*
S20.31950 (11)0.08507 (8)0.41082 (4)0.01834 (15)
O60.5275 (5)0.1046 (3)0.73759 (13)0.0379 (6)
O70.2256 (5)0.0097 (4)0.69863 (14)0.0493 (8)
O80.1789 (4)0.0611 (3)0.37490 (12)0.0231 (5)
O90.4738 (4)0.1484 (3)0.35681 (13)0.0301 (5)
O100.1907 (4)0.2203 (3)0.45482 (13)0.0282 (5)
N20.4156 (5)0.0558 (4)0.68796 (15)0.0285 (6)
C70.4798 (5)0.0078 (4)0.48202 (16)0.0168 (5)
C80.3892 (5)0.0087 (4)0.55576 (17)0.0185 (6)
H8A0.24930.05020.56770.022*
C90.5124 (5)0.0534 (4)0.61044 (17)0.0215 (6)
C100.7218 (5)0.1167 (4)0.59464 (18)0.0227 (6)
H10A0.80170.15780.63270.027*
C110.8082 (5)0.1169 (4)0.52112 (19)0.0239 (6)
H11A0.94790.15900.50940.029*
C120.6880 (5)0.0546 (4)0.46421 (17)0.0195 (6)
H12A0.74710.05490.41480.023*
S30.77990 (11)0.92863 (9)0.89784 (5)0.02185 (17)
N30.9177 (4)1.2377 (3)0.85658 (14)0.0211 (5)
H1N31.01121.31730.84480.025*
H2N30.77781.26430.85440.025*
N41.1997 (4)1.0283 (3)0.88215 (14)0.0199 (5)
H1N41.29731.10480.87080.024*
H2N41.24080.92090.89630.024*
C130.8638 (5)0.8126 (4)1.08658 (18)0.0229 (6)
H13A0.72310.86111.07300.027*
C140.9388 (6)0.8053 (4)1.16156 (19)0.0292 (7)
H14A0.84790.84901.19820.035*
C151.1470 (6)0.7337 (4)1.18259 (18)0.0294 (7)
H15A1.19610.72901.23320.035*
C161.2827 (6)0.6688 (4)1.12789 (19)0.0274 (7)
H16A1.42340.62081.14170.033*
C171.2086 (5)0.6754 (4)1.05282 (17)0.0217 (6)
H17A1.30000.63121.01640.026*
C180.9993 (5)0.7473 (4)1.03121 (17)0.0178 (6)
C190.9156 (5)0.7358 (4)0.95108 (18)0.0216 (6)
H19A0.81270.64320.95560.026*
H19B1.04060.70150.92040.026*
C200.9890 (5)1.0752 (4)0.87791 (15)0.0165 (5)
S40.70823 (11)0.42238 (9)0.29521 (4)0.02029 (15)
N50.8675 (4)0.6477 (3)0.37270 (14)0.0205 (5)
H1N50.96470.69320.39800.025*
H2N50.73790.69800.36500.025*
N61.1136 (4)0.4218 (3)0.35682 (14)0.0209 (5)
H1N61.21320.46500.38190.025*
H2N61.14250.32620.33880.025*
C210.7614 (5)0.3251 (4)0.09917 (17)0.0211 (6)
H21A0.89050.38520.09000.025*
C220.6228 (5)0.3107 (4)0.03818 (17)0.0241 (6)
H22A0.65950.36090.01180.029*
C230.4305 (5)0.2224 (4)0.05098 (18)0.0258 (7)
H23A0.33780.21280.00990.031*
C240.3766 (5)0.1484 (4)0.12517 (19)0.0266 (7)
H24A0.24630.08970.13410.032*
C250.5157 (5)0.1608 (4)0.18650 (17)0.0228 (6)
H25A0.47940.10910.23620.027*
C260.7088 (5)0.2503 (4)0.17390 (16)0.0180 (6)
C270.8588 (5)0.2713 (4)0.23962 (17)0.0242 (6)
H27A0.99760.31820.22000.029*
H27B0.89050.16010.27180.029*
C280.9169 (5)0.5019 (4)0.34598 (16)0.0175 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0132 (3)0.0156 (3)0.0147 (3)0.0010 (2)0.0006 (2)0.0028 (2)
O10.0274 (12)0.0322 (12)0.0163 (10)0.0034 (9)0.0009 (9)0.0061 (9)
O20.0218 (11)0.0285 (12)0.0236 (11)0.0070 (9)0.0016 (9)0.0066 (9)
O30.0197 (10)0.0164 (10)0.0169 (9)0.0018 (8)0.0002 (8)0.0000 (8)
O40.0138 (10)0.0201 (10)0.0209 (10)0.0010 (8)0.0001 (8)0.0019 (8)
O50.0202 (10)0.0223 (10)0.0222 (10)0.0061 (8)0.0008 (8)0.0111 (8)
N10.0229 (14)0.0157 (12)0.0188 (12)0.0024 (10)0.0025 (10)0.0019 (9)
C10.0144 (13)0.0126 (13)0.0167 (13)0.0009 (10)0.0022 (10)0.0018 (10)
C20.0130 (13)0.0167 (13)0.0199 (13)0.0007 (10)0.0032 (10)0.0012 (11)
C30.0128 (13)0.0199 (14)0.0273 (15)0.0018 (10)0.0006 (11)0.0034 (12)
C40.0167 (14)0.0195 (14)0.0182 (13)0.0018 (11)0.0020 (11)0.0008 (11)
C50.0176 (13)0.0149 (13)0.0166 (12)0.0015 (10)0.0048 (10)0.0031 (10)
C60.0141 (13)0.0144 (13)0.0170 (13)0.0010 (10)0.0017 (10)0.0002 (10)
S20.0198 (4)0.0174 (3)0.0176 (3)0.0013 (3)0.0044 (3)0.0023 (3)
O60.0591 (18)0.0348 (14)0.0216 (12)0.0018 (12)0.0106 (11)0.0094 (10)
O70.0337 (15)0.092 (2)0.0243 (13)0.0050 (15)0.0061 (11)0.0138 (14)
O80.0235 (11)0.0209 (11)0.0232 (10)0.0045 (8)0.0055 (9)0.0004 (9)
O90.0310 (13)0.0378 (13)0.0224 (11)0.0120 (10)0.0038 (9)0.0118 (10)
O100.0330 (13)0.0221 (11)0.0284 (11)0.0104 (9)0.0110 (10)0.0035 (9)
N20.0390 (18)0.0263 (14)0.0199 (13)0.0067 (12)0.0021 (12)0.0052 (11)
C70.0169 (14)0.0150 (13)0.0175 (13)0.0034 (10)0.0031 (10)0.0003 (10)
C80.0172 (14)0.0171 (13)0.0205 (13)0.0024 (11)0.0019 (11)0.0019 (11)
C90.0232 (16)0.0201 (15)0.0206 (14)0.0059 (11)0.0056 (11)0.0036 (11)
C100.0206 (15)0.0202 (15)0.0276 (15)0.0037 (11)0.0091 (12)0.0055 (12)
C110.0149 (14)0.0199 (15)0.0363 (17)0.0018 (11)0.0032 (12)0.0021 (13)
C120.0178 (14)0.0164 (14)0.0235 (14)0.0011 (11)0.0009 (11)0.0013 (11)
S30.0150 (4)0.0199 (4)0.0292 (4)0.0045 (3)0.0034 (3)0.0025 (3)
N30.0147 (12)0.0189 (12)0.0294 (13)0.0045 (9)0.0001 (10)0.0012 (10)
N40.0142 (12)0.0211 (13)0.0241 (12)0.0025 (9)0.0002 (10)0.0016 (10)
C130.0206 (15)0.0208 (15)0.0268 (15)0.0007 (11)0.0053 (12)0.0024 (12)
C140.0363 (19)0.0219 (16)0.0287 (16)0.0027 (13)0.0097 (14)0.0010 (13)
C150.038 (2)0.0278 (18)0.0200 (15)0.0090 (14)0.0013 (13)0.0053 (13)
C160.0228 (16)0.0265 (17)0.0298 (17)0.0019 (12)0.0054 (13)0.0067 (13)
C170.0192 (15)0.0220 (15)0.0224 (14)0.0022 (11)0.0039 (12)0.0002 (12)
C180.0176 (14)0.0130 (13)0.0224 (14)0.0041 (10)0.0024 (11)0.0004 (11)
C190.0195 (15)0.0150 (14)0.0298 (16)0.0016 (11)0.0014 (12)0.0017 (12)
C200.0156 (13)0.0207 (14)0.0136 (12)0.0031 (10)0.0007 (10)0.0027 (10)
S40.0170 (4)0.0252 (4)0.0202 (3)0.0003 (3)0.0022 (3)0.0082 (3)
N50.0177 (12)0.0222 (13)0.0228 (12)0.0013 (9)0.0009 (10)0.0067 (10)
N60.0187 (13)0.0233 (13)0.0212 (12)0.0006 (10)0.0056 (10)0.0050 (10)
C210.0222 (15)0.0188 (14)0.0224 (14)0.0025 (11)0.0019 (12)0.0027 (12)
C220.0329 (18)0.0236 (16)0.0157 (13)0.0003 (13)0.0014 (12)0.0027 (12)
C230.0283 (17)0.0249 (16)0.0265 (16)0.0023 (13)0.0125 (13)0.0116 (13)
C240.0242 (16)0.0241 (16)0.0335 (17)0.0064 (12)0.0009 (13)0.0087 (13)
C250.0269 (16)0.0221 (15)0.0185 (14)0.0005 (12)0.0036 (12)0.0001 (12)
C260.0215 (15)0.0182 (14)0.0149 (12)0.0013 (11)0.0023 (11)0.0047 (11)
C270.0256 (16)0.0286 (16)0.0197 (14)0.0069 (12)0.0035 (12)0.0103 (12)
C280.0163 (14)0.0215 (15)0.0144 (12)0.0026 (11)0.0008 (11)0.0011 (11)
Geometric parameters (Å, º) top
S1—O51.449 (2)N4—C201.306 (4)
S1—O41.456 (2)N4—H1N40.8600
S1—O31.461 (2)N4—H2N40.8600
S1—C11.776 (3)C13—C141.383 (5)
O1—N11.232 (3)C13—C181.396 (4)
O2—N11.229 (3)C13—H13A0.9300
N1—C51.464 (4)C14—C151.380 (5)
C1—C21.388 (4)C14—H14A0.9300
C1—C61.390 (4)C15—C161.387 (5)
C2—C31.403 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.383 (4)
C3—C41.379 (4)C16—H16A0.9300
C3—H3A0.9300C17—C181.389 (4)
C4—C51.390 (4)C17—H17A0.9300
C4—H4A0.9300C18—C191.510 (4)
C5—C61.386 (4)C19—H19A0.9700
C6—H6A0.9300C19—H19B0.9700
S2—O91.440 (2)S4—C281.740 (3)
S2—O81.452 (2)S4—C271.835 (3)
S2—O101.460 (2)N5—C281.310 (4)
S2—C71.778 (3)N5—H1N50.8600
O6—N21.222 (4)N5—H2N50.8600
O7—N21.224 (4)N6—C281.315 (4)
N2—C91.471 (4)N6—H1N60.8600
C7—C121.386 (4)N6—H2N60.8600
C7—C81.393 (4)C21—C221.384 (4)
C8—C91.376 (4)C21—C261.387 (4)
C8—H8A0.9300C21—H21A0.9300
C9—C101.390 (4)C22—C231.379 (5)
C10—C111.380 (5)C22—H22A0.9300
C10—H10A0.9300C23—C241.379 (4)
C11—C121.396 (4)C23—H23A0.9300
C11—H11A0.9300C24—C251.387 (4)
C12—H12A0.9300C24—H24A0.9300
S3—C201.742 (3)C25—C261.388 (4)
S3—C191.806 (3)C25—H25A0.9300
N3—C201.316 (4)C26—C271.504 (4)
N3—H1N30.8600C27—H27A0.9700
N3—H2N30.8600C27—H27B0.9700
O5—S1—O4113.68 (12)C14—C13—C18120.0 (3)
O5—S1—O3113.38 (12)C14—C13—H13A120.0
O4—S1—O3111.39 (12)C18—C13—H13A120.0
O5—S1—C1107.07 (12)C15—C14—C13120.7 (3)
O4—S1—C1105.35 (12)C15—C14—H14A119.6
O3—S1—C1105.17 (12)C13—C14—H14A119.6
O2—N1—O1122.9 (2)C14—C15—C16119.6 (3)
O2—N1—C5118.8 (2)C14—C15—H15A120.2
O1—N1—C5118.3 (2)C16—C15—H15A120.2
C2—C1—C6121.3 (3)C17—C16—C15120.0 (3)
C2—C1—S1121.1 (2)C17—C16—H16A120.0
C6—C1—S1117.5 (2)C15—C16—H16A120.0
C1—C2—C3118.9 (3)C16—C17—C18120.7 (3)
C1—C2—H2A120.5C16—C17—H17A119.6
C3—C2—H2A120.5C18—C17—H17A119.6
C4—C3—C2121.1 (3)C17—C18—C13119.0 (3)
C4—C3—H3A119.4C17—C18—C19119.0 (3)
C2—C3—H3A119.4C13—C18—C19121.7 (3)
C3—C4—C5118.1 (3)C18—C19—S3117.6 (2)
C3—C4—H4A121.0C18—C19—H19A107.9
C5—C4—H4A121.0S3—C19—H19A107.9
C6—C5—C4122.7 (3)C18—C19—H19B107.9
C6—C5—N1117.9 (2)S3—C19—H19B107.9
C4—C5—N1119.4 (2)H19A—C19—H19B107.2
C5—C6—C1117.8 (3)N4—C20—N3122.3 (3)
C5—C6—H6A121.1N4—C20—S3123.1 (2)
C1—C6—H6A121.1N3—C20—S3114.6 (2)
O9—S2—O8112.40 (13)C28—S4—C27103.46 (14)
O9—S2—O10113.93 (15)C28—N5—H1N5120.0
O8—S2—O10111.89 (14)C28—N5—H2N5120.0
O9—S2—C7106.75 (14)H1N5—N5—H2N5120.0
O8—S2—C7106.93 (13)C28—N6—H1N6120.0
O10—S2—C7104.21 (13)C28—N6—H2N6120.0
O6—N2—O7123.8 (3)H1N6—N6—H2N6120.0
O6—N2—C9118.6 (3)C22—C21—C26120.4 (3)
O7—N2—C9117.6 (3)C22—C21—H21A119.8
C12—C7—C8120.9 (3)C26—C21—H21A119.8
C12—C7—S2120.8 (2)C23—C22—C21120.4 (3)
C8—C7—S2118.3 (2)C23—C22—H22A119.8
C9—C8—C7118.1 (3)C21—C22—H22A119.8
C9—C8—H8A120.9C22—C23—C24119.6 (3)
C7—C8—H8A120.9C22—C23—H23A120.2
C8—C9—C10122.5 (3)C24—C23—H23A120.2
C8—C9—N2118.3 (3)C23—C24—C25120.4 (3)
C10—C9—N2119.2 (3)C23—C24—H24A119.8
C11—C10—C9118.4 (3)C25—C24—H24A119.8
C11—C10—H10A120.8C24—C25—C26120.2 (3)
C9—C10—H10A120.8C24—C25—H25A119.9
C10—C11—C12120.6 (3)C26—C25—H25A119.9
C10—C11—H11A119.7C21—C26—C25119.0 (3)
C12—C11—H11A119.7C21—C26—C27119.5 (3)
C7—C12—C11119.4 (3)C25—C26—C27121.4 (3)
C7—C12—H12A120.3C26—C27—S4105.9 (2)
C11—C12—H12A120.3C26—C27—H27A110.6
C20—S3—C19104.77 (14)S4—C27—H27A110.6
C20—N3—H1N3120.0C26—C27—H27B110.6
C20—N3—H2N3120.0S4—C27—H27B110.6
H1N3—N3—H2N3120.0H27A—C27—H27B108.7
C20—N4—H1N4120.0N5—C28—N6121.5 (3)
C20—N4—H2N4120.0N5—C28—S4116.1 (2)
H1N4—N4—H2N4120.0N6—C28—S4122.4 (2)
O5—S1—C1—C230.8 (3)O7—N2—C9—C10175.5 (3)
O4—S1—C1—C2152.1 (2)C8—C9—C10—C110.1 (4)
O3—S1—C1—C290.1 (2)N2—C9—C10—C11178.6 (3)
O5—S1—C1—C6153.3 (2)C9—C10—C11—C120.2 (4)
O4—S1—C1—C632.0 (2)C8—C7—C12—C110.1 (4)
O3—S1—C1—C685.8 (2)S2—C7—C12—C11179.0 (2)
C6—C1—C2—C31.3 (4)C10—C11—C12—C70.1 (4)
S1—C1—C2—C3174.5 (2)C18—C13—C14—C150.0 (5)
C1—C2—C3—C40.5 (4)C13—C14—C15—C160.1 (5)
C2—C3—C4—C50.5 (4)C14—C15—C16—C170.2 (5)
C3—C4—C5—C60.8 (4)C15—C16—C17—C180.3 (5)
C3—C4—C5—N1179.1 (2)C16—C17—C18—C130.2 (4)
O2—N1—C5—C65.8 (4)C16—C17—C18—C19173.9 (3)
O1—N1—C5—C6174.1 (2)C14—C13—C18—C170.1 (4)
O2—N1—C5—C4174.1 (3)C14—C13—C18—C19173.6 (3)
O1—N1—C5—C46.0 (4)C17—C18—C19—S3135.9 (2)
C4—C5—C6—C10.0 (4)C13—C18—C19—S350.5 (4)
N1—C5—C6—C1179.8 (2)C20—S3—C19—C1867.8 (2)
C2—C1—C6—C51.0 (4)C19—S3—C20—N417.4 (3)
S1—C1—C6—C5174.9 (2)C19—S3—C20—N3163.9 (2)
O9—S2—C7—C1228.0 (3)C26—C21—C22—C230.2 (5)
O8—S2—C7—C1292.5 (2)C21—C22—C23—C240.1 (5)
O10—S2—C7—C12148.9 (2)C22—C23—C24—C250.7 (5)
O9—S2—C7—C8153.1 (2)C23—C24—C25—C261.0 (5)
O8—S2—C7—C886.4 (2)C22—C21—C26—C250.1 (4)
O10—S2—C7—C832.2 (3)C22—C21—C26—C27178.5 (3)
C12—C7—C8—C90.2 (4)C24—C25—C26—C210.7 (4)
S2—C7—C8—C9179.1 (2)C24—C25—C26—C27177.9 (3)
C7—C8—C9—C100.1 (4)C21—C26—C27—S4108.2 (3)
C7—C8—C9—N2178.8 (3)C25—C26—C27—S470.4 (3)
O6—N2—C9—C8177.2 (3)C28—S4—C27—C26159.2 (2)
O7—N2—C9—C83.3 (4)C27—S4—C28—N5160.8 (2)
O6—N2—C9—C104.0 (4)C27—S4—C28—N618.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O4i0.861.972.796 (3)162
N3—H1N3···S1i0.862.843.694 (3)170
N3—H2N3···O3ii0.862.052.898 (3)171
N4—H1N4···O3i0.862.263.080 (3)160
N4—H2N4···O5iii0.862.373.126 (3)146
N5—H1N5···O10i0.861.912.764 (3)176
N5—H1N5···S2i0.862.853.642 (3)154
N5—H2N5···O9ii0.861.942.783 (3)168
N6—H1N6···O1iii0.862.273.072 (3)156
N6—H2N6···O8iii0.862.072.787 (3)141
C6—H6A···O40.932.562.900 (3)102
C8—H8A···O100.932.572.896 (4)101
C19—H19B···O4iii0.972.513.331 (4)142
C27—H27B···O8iii0.972.533.259 (4)132
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H11N2S+·C6H4NO5S
Mr369.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.0397 (1), 7.7856 (1), 17.4680 (2)
α, β, γ (°)81.366 (1), 89.322 (1), 87.057 (1)
V3)811.01 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.32 × 0.19 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.894, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
19026, 8874, 7378
Rint0.043
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.03
No. of reflections8874
No. of parameters433
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.32
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.03 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O4i0.861.972.796 (3)161.8
N3—H1N3···S1i0.862.843.694 (3)169.6
N3—H2N3···O3ii0.862.052.898 (3)170.5
N4—H1N4···O3i0.862.263.080 (3)159.9
N4—H2N4···O5iii0.862.373.126 (3)146.3
N5—H1N5···O10i0.861.912.764 (3)176.3
N5—H1N5···S2i0.862.853.642 (3)153.7
N5—H2N5···O9ii0.861.942.783 (3)167.6
N6—H1N6···O1iii0.862.273.072 (3)155.8
N6—H2N6···O8iii0.862.072.787 (3)140.8
C6—H6A···O40.932.562.900 (3)102
C8—H8A···O100.932.572.896 (4)101
C19—H19B···O4iii0.972.513.331 (4)142
C27—H27B···O8iii0.972.533.259 (4)132
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. HKF and IAR also thank the Malaysian Government and Universiti Sains Malaysia for FRGS grant No. 203/PFIZIK/671064. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST) and the Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096–o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875–o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725–o2727.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1195-o1196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds