organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3-chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 June 2008; accepted 14 June 2008; online 19 June 2008)

In the structure of the the title compound, C13H9Cl2NO, the N—H and C=O groups are mutually trans. Furthermore, the conformation of the C=O group is syn to the ortho-chloro group in the benzoyl ring, while the N—H bond is anti to the meta-chloro group in the aniline ring. The amide group forms dihedral angles of 89.11 (19) and 22.58 (37)°, respectively, with the benzoyl and aniline rings, while the benzoyl and aniline rings form a dihedral angle of 69.74 (14)°. The mol­ecules are linked into infinite chains through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]); Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o861.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Orthorhombic, P c a 21

  • a = 11.430 (1) Å

  • b = 12.209 (2) Å

  • c = 8.878 (1) Å

  • V = 1238.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 299 (2) K

  • 0.48 × 0.18 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.794, Tmax = 0.980

  • 4926 measured reflections

  • 1746 independent reflections

  • 1248 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.139

  • S = 1.15

  • 1746 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 387 Friedel pairs

  • Flack parameter: 0.02 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.06 2.880 (5) 159
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(3-chlorophenyl)-benzamide (I) has been determined to explore the effect of substituents on the structures of benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). The N—H and C=O bonds are trans to each other, Fig. 1, similar to that observed in N-(3-chlorophenyl)-benzamide (N3CPBA) (Gowda, Tokarčík et al., 2008), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003), 2-methyl-N-(3-chlorophenyl)-benzamide (N3CP2MBA) (Gowda, Foro et al., 2008), and other benzanilides. Further, the conformation of the C=O group is syn to the ortho-chloro group in the benzoyl ring, while the N—H bond is anti to the meta-chloro group in the aniline ring, similar to that observed in N3CP2MBA (Gowda, Foro et al., 2008). The amide group forms dihedral angles of 89.11 (19)° and 22.58 (37)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form a dihedral angle of 69.74 (14)°. These compare with the corresponding values of 55.8 (7)°, 18.6 (12)° and 37.5 (1)°, respectively, in N3CP2MBA. In the crystal structure of (I), the molecules are linked by N—H···O hydrogen bonds (Table 1) forming chains running along the c axis, Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008).

Experimental top

Compound (I) was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was confirmed by melting point, and infrared and NMR spectra. Single crystals used for the X-ray diffraction analysis were obtained from an ethanolic solution of (I).

Refinement top

The H atoms were positioned with idealized geometries using a riding model with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2-Chloro-N-(3-chlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.427 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1634 reflections
a = 11.430 (1) Åθ = 2.4–27.7°
b = 12.209 (2) ŵ = 0.51 mm1
c = 8.878 (1) ÅT = 299 K
V = 1238.9 (3) Å3Plate, colourless
Z = 40.48 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1746 independent reflections
Radiation source: fine-focus sealed tube1248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 147
Tmin = 0.794, Tmax = 0.980k = 915
4926 measured reflectionsl = 114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.0826P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
1746 reflectionsΔρmax = 0.39 e Å3
154 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 387 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (13)
Crystal data top
C13H9Cl2NOV = 1238.9 (3) Å3
Mr = 266.11Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.430 (1) ŵ = 0.51 mm1
b = 12.209 (2) ÅT = 299 K
c = 8.878 (1) Å0.48 × 0.18 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1746 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1248 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.980Rint = 0.022
4926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.39 e Å3
S = 1.15Δρmin = 0.42 e Å3
1746 reflectionsAbsolute structure: Flack (1983), 387 Friedel pairs
154 parametersAbsolute structure parameter: 0.02 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75422 (12)0.62626 (9)0.0970 (2)0.0776 (5)
Cl20.49999 (15)0.21361 (13)0.3455 (3)0.1038 (7)
O10.6539 (3)0.2242 (3)0.0041 (3)0.0597 (8)
N10.7788 (3)0.2603 (3)0.1873 (4)0.0499 (9)
H1N0.80490.23340.27020.060*
C10.8275 (3)0.3614 (3)0.1443 (5)0.0437 (9)
C20.7719 (3)0.4339 (3)0.0469 (5)0.0433 (9)
H20.70120.41590.00140.052*
C30.8252 (4)0.5339 (3)0.0200 (5)0.0481 (10)
C40.9300 (4)0.5626 (4)0.0814 (5)0.0559 (12)
H40.96380.63010.06020.067*
C50.9845 (4)0.4894 (4)0.1753 (7)0.0680 (14)
H51.05660.50720.21730.082*
C60.9340 (4)0.3903 (4)0.2082 (6)0.0577 (11)
H60.97130.34220.27380.069*
C70.6971 (4)0.2001 (3)0.1166 (5)0.0444 (9)
C80.6619 (3)0.0962 (3)0.1951 (5)0.0458 (9)
C90.5699 (4)0.0925 (4)0.2959 (6)0.0578 (12)
C100.5336 (4)0.0053 (4)0.3608 (7)0.0766 (16)
H100.47090.00670.42750.092*
C110.5915 (6)0.0989 (4)0.3252 (9)0.0805 (17)
H110.56890.16460.36960.097*
C120.6820 (6)0.0983 (4)0.2255 (9)0.090 (2)
H120.71980.16330.20070.108*
C130.7178 (5)0.0001 (4)0.1608 (8)0.0771 (15)
H130.78030.00030.09370.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0812 (7)0.0536 (6)0.0981 (10)0.0008 (6)0.0181 (7)0.0268 (7)
Cl20.1036 (10)0.0798 (9)0.1282 (16)0.0244 (8)0.0548 (10)0.0169 (10)
O10.0753 (19)0.0604 (18)0.0433 (16)0.0176 (15)0.0119 (16)0.0148 (15)
N10.059 (2)0.0434 (17)0.047 (2)0.0080 (15)0.0111 (17)0.0101 (17)
C10.043 (2)0.046 (2)0.042 (2)0.0078 (16)0.0003 (19)0.007 (2)
C20.044 (2)0.044 (2)0.042 (2)0.0025 (17)0.0062 (19)0.0029 (18)
C30.054 (2)0.040 (2)0.051 (3)0.0010 (18)0.004 (2)0.0030 (19)
C40.053 (3)0.060 (3)0.055 (3)0.017 (2)0.001 (2)0.011 (2)
C50.051 (2)0.078 (3)0.075 (4)0.023 (2)0.008 (3)0.018 (3)
C60.050 (2)0.068 (3)0.056 (3)0.005 (2)0.011 (2)0.018 (2)
C70.047 (2)0.046 (2)0.040 (2)0.0003 (18)0.0013 (19)0.0077 (19)
C80.047 (2)0.045 (2)0.046 (2)0.0003 (16)0.007 (2)0.0032 (18)
C90.050 (2)0.059 (3)0.064 (3)0.002 (2)0.001 (2)0.014 (2)
C100.063 (3)0.078 (3)0.089 (4)0.022 (3)0.008 (3)0.029 (4)
C110.093 (4)0.053 (3)0.096 (4)0.020 (3)0.016 (4)0.027 (3)
C120.113 (5)0.042 (3)0.116 (5)0.013 (3)0.003 (5)0.011 (3)
C130.085 (3)0.056 (3)0.090 (4)0.009 (2)0.013 (4)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C31.735 (4)C5—H50.9300
Cl2—C91.737 (5)C6—H60.9300
O1—C71.217 (5)C7—C81.502 (6)
N1—C71.344 (5)C8—C131.372 (6)
N1—C11.406 (5)C8—C91.383 (6)
N1—H1N0.8600C9—C101.389 (7)
C1—C61.389 (6)C10—C111.358 (8)
C1—C21.391 (6)C10—H100.9300
C2—C31.385 (5)C11—C121.362 (9)
C2—H20.9300C11—H110.9300
C3—C41.362 (6)C12—C131.390 (8)
C4—C51.372 (7)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.372 (6)
C7—N1—C1128.9 (3)O1—C7—N1124.1 (4)
C7—N1—H1N115.5O1—C7—C8120.3 (4)
C1—N1—H1N115.5N1—C7—C8115.6 (3)
C6—C1—C2119.5 (3)C13—C8—C9118.0 (4)
C6—C1—N1117.3 (3)C13—C8—C7119.8 (4)
C2—C1—N1123.1 (3)C9—C8—C7122.1 (4)
C3—C2—C1117.9 (4)C8—C9—C10121.6 (5)
C3—C2—H2121.1C8—C9—Cl2119.1 (3)
C1—C2—H2121.1C10—C9—Cl2119.3 (4)
C4—C3—C2123.0 (4)C11—C10—C9118.8 (5)
C4—C3—Cl1118.9 (3)C11—C10—H10120.6
C2—C3—Cl1118.1 (3)C9—C10—H10120.6
C3—C4—C5118.4 (4)C10—C11—C12121.1 (5)
C3—C4—H4120.8C10—C11—H11119.4
C5—C4—H4120.8C12—C11—H11119.4
C4—C5—C6120.8 (4)C11—C12—C13119.8 (5)
C4—C5—H5119.6C11—C12—H12120.1
C6—C5—H5119.6C13—C12—H12120.1
C5—C6—C1120.4 (4)C8—C13—C12120.7 (5)
C5—C6—H6119.8C8—C13—H13119.7
C1—C6—H6119.8C12—C13—H13119.7
C7—N1—C1—C6160.3 (4)N1—C7—C8—C1392.5 (5)
C7—N1—C1—C222.4 (7)O1—C7—C8—C990.1 (5)
C6—C1—C2—C31.1 (6)N1—C7—C8—C991.1 (5)
N1—C1—C2—C3176.2 (4)C13—C8—C9—C100.4 (7)
C1—C2—C3—C41.6 (6)C7—C8—C9—C10176.0 (5)
C1—C2—C3—Cl1178.2 (3)C13—C8—C9—Cl2178.2 (4)
C2—C3—C4—C50.7 (7)C7—C8—C9—Cl25.3 (6)
Cl1—C3—C4—C5179.2 (4)C8—C9—C10—C110.9 (8)
C3—C4—C5—C60.8 (8)Cl2—C9—C10—C11177.8 (5)
C4—C5—C6—C11.3 (8)C9—C10—C11—C121.3 (9)
C2—C1—C6—C50.3 (7)C10—C11—C12—C131.2 (10)
N1—C1—C6—C5177.7 (5)C9—C8—C13—C120.3 (9)
C1—N1—C7—O12.6 (7)C7—C8—C13—C12176.2 (5)
C1—N1—C7—C8178.6 (4)C11—C12—C13—C80.8 (10)
O1—C7—C8—C1386.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.880 (5)159
Symmetry code: (i) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)299
a, b, c (Å)11.430 (1), 12.209 (2), 8.878 (1)
V3)1238.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.48 × 0.18 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.794, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4926, 1746, 1248
Rint0.022
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.139, 1.15
No. of reflections1746
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.42
Absolute structureFlack (1983), 387 Friedel pairs
Absolute structure parameter0.02 (13)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.880 (5)159
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds