organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-5,6-di­meth­oxy­indoline at 123 K

aZhejiang Police College Experience Center, Zhejiang Police College, Hangzhou 310053, People's Republic of China
*Correspondence e-mail: zpccxw@126.com

(Received 4 April 2008; accepted 9 June 2008; online 19 June 2008)

In the title compound, C12H15NO3, all C, N and O atoms lie in a mirror plane. An intramolecular C—H⋯O hydrogen bond is present.

Related literature

For the synthesis, see: Kuwano et al. (2006[Kuwano, R., Kashiwabara, M., Sato, K., Ito, T., Kaneda, K. & Ito, Y. (2006). Tetrahedron Asymmetry, 17, 521-535.]). For general background, see: Fernandez et al. (2006[Fernandez, V. G., Fernandez-Torres, P. & Gotor, V. (2006). Tetrahedron Asymmetry, 17, 2558-2564.]); Amit et al. (1976[Amit, B., Ben-Efraim, D. A. & Patchornik, A. (1976). J. Am. Chem. Soc. 98, 834-835.]). For a related structure, see: Moreno et al. (1998[Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., Da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365-373.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3

  • Mr = 221.25

  • Orthorhombic, P n m a

  • a = 18.541 (4) Å

  • b = 6.9572 (15) Å

  • c = 8.5582 (17) Å

  • V = 1103.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.29 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.976

  • 11013 measured reflections

  • 1054 independent reflections

  • 964 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.40

  • 1054 reflections

  • 97 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3 0.95 2.30 2.861 (2) 117

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The indoline cores have attracted particular attention in recent years due to their presence in a great variety of natural products, biologically active alkaloids and pharmaceuticals (Fernandez et al., 2006). Some nitro derivative compounds of 1-acetyl-indoline can undergo photosolvolysis which points to some possible use in the synthesis of peptides (Amit et al., 1976). Here the crystal structure of the title compound is reported.

The title molecule (Fig.1), displays mirror symmetry , with all C, N atom and O atoms lying in the mirror plane.

Related literature top

For the synthesis, see: Kuwano et al. (2006). For general background, see: Fernandez et al. (2006); Amit et al. (1976). For a related structure, see: Moreno et al. (1998).

Experimental top

The title compound was prepared according to the literature method (Kuwano et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of an isopropanol solution at 295 K.

Refinement top

H atoms were positioned geometrically (C-H = 0.95-0.99 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
1-Acetyl-5,6-dimethoxyindoline top
Crystal data top
C12H15NO3F(000) = 472
Mr = 221.25Dx = 1.331 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1054 reflections
a = 18.541 (4) Åθ = 2.2–25.0°
b = 6.9572 (15) ŵ = 0.10 mm1
c = 8.5582 (17) ÅT = 123 K
V = 1103.9 (4) Å3Block, colourless
Z = 40.29 × 0.26 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1054 independent reflections
Radiation source: fine-focus sealed tube964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2022
Tmin = 0.963, Tmax = 0.976k = 87
11013 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.40 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
1054 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = 0.59 e Å3
Crystal data top
C12H15NO3V = 1103.9 (4) Å3
Mr = 221.25Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 18.541 (4) ŵ = 0.10 mm1
b = 6.9572 (15) ÅT = 123 K
c = 8.5582 (17) Å0.29 × 0.26 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
964 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.976Rint = 0.028
11013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0576 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.40Δρmax = 0.41 e Å3
1054 reflectionsΔρmin = 0.59 e Å3
97 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.74869 (9)0.25000.6594 (2)0.0501 (6)
O10.78145 (11)0.25000.9506 (2)0.0526 (6)
O30.95611 (11)0.25000.2934 (2)0.0602 (7)
N11.00964 (12)0.25000.5307 (3)0.0412 (6)
C30.96484 (14)0.25000.7812 (3)0.0399 (7)
C40.94640 (14)0.25000.6247 (3)0.0366 (6)
C60.82118 (14)0.25000.6909 (3)0.0369 (6)
C111.01159 (15)0.25000.3721 (3)0.0439 (7)
C50.87457 (14)0.25000.5772 (3)0.0375 (6)
H50.86260.25000.47170.045*
C10.83923 (14)0.25000.8506 (3)0.0397 (7)
C20.91147 (14)0.25000.8952 (3)0.0424 (7)
H20.92390.25001.00050.051*
C121.08471 (16)0.25000.2962 (4)0.0529 (8)
H12A1.12140.25000.37540.079*
H12B1.08970.36270.23240.079*0.50
H12C1.08970.13730.23240.079*0.50
C91.04564 (15)0.25000.8003 (4)0.0515 (8)
H9A1.06160.13650.85630.062*0.50
H9B1.06160.36350.85630.062*0.50
C80.72852 (17)0.25000.4986 (3)0.0595 (9)
H8A0.67690.25000.49020.089*
H8B0.74750.13730.44870.089*0.50
H8C0.74750.36270.44870.089*0.50
C101.07441 (15)0.25000.6328 (4)0.0533 (8)
H10A1.10360.36330.61370.064*0.50
H10B1.10360.13670.61370.064*0.50
C70.79744 (19)0.25001.1138 (3)0.0658 (10)
H7A0.75330.25001.17230.099*
H7B0.82490.36271.13940.099*0.50
H7C0.82490.13731.13940.099*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0326 (11)0.0844 (15)0.0334 (10)0.0000.0007 (7)0.000
O10.0446 (12)0.0827 (15)0.0304 (10)0.0000.0041 (8)0.000
O30.0465 (13)0.0931 (18)0.0410 (12)0.0000.0042 (9)0.000
N10.0325 (12)0.0470 (14)0.0440 (13)0.0000.0020 (9)0.000
C30.0377 (15)0.0415 (14)0.0406 (15)0.0000.0061 (11)0.000
C40.0342 (14)0.0362 (13)0.0395 (14)0.0000.0002 (11)0.000
C60.0317 (13)0.0443 (14)0.0348 (13)0.0000.0014 (10)0.000
C110.0416 (16)0.0437 (15)0.0463 (14)0.0000.0065 (13)0.000
C50.0372 (14)0.0436 (14)0.0317 (12)0.0000.0019 (11)0.000
C10.0397 (15)0.0449 (15)0.0345 (13)0.0000.0013 (11)0.000
C20.0474 (16)0.0484 (16)0.0313 (13)0.0000.0074 (11)0.000
C120.0473 (18)0.0518 (17)0.0595 (18)0.0000.0154 (14)0.000
C90.0392 (17)0.0622 (19)0.0532 (18)0.0000.0133 (13)0.000
C80.0360 (16)0.105 (3)0.0374 (15)0.0000.0043 (12)0.000
C100.0319 (15)0.0640 (19)0.0639 (19)0.0000.0025 (13)0.000
C70.061 (2)0.105 (3)0.0311 (14)0.0000.0030 (14)0.000
Geometric parameters (Å, º) top
O2—C61.371 (3)C1—C21.393 (4)
O2—C81.426 (3)C2—H20.9300
O1—C11.371 (3)C12—H12A0.9600
O1—C71.428 (3)C12—H12B0.9600
O3—C111.230 (3)C12—H12C0.9600
N1—C111.358 (4)C9—C101.530 (5)
N1—C41.422 (3)C9—H9A0.9700
N1—C101.485 (4)C9—H9B0.9700
C3—C41.383 (4)C8—H8A0.9600
C3—C21.389 (4)C8—H8B0.9600
C3—C91.507 (4)C8—H8C0.9600
C4—C51.392 (4)C10—H10A0.9700
C6—C51.388 (4)C10—H10B0.9700
C6—C11.408 (4)C7—H7A0.9600
C11—C121.503 (4)C7—H7B0.9600
C5—H50.9300C7—H7C0.9600
C6—O2—C8116.6 (2)H12A—C12—H12B109.5
C1—O1—C7116.6 (2)C11—C12—H12C109.5
C11—N1—C4126.0 (2)H12A—C12—H12C109.5
C11—N1—C10124.5 (2)H12B—C12—H12C109.5
C4—N1—C10109.5 (2)C3—C9—C10104.2 (2)
C4—C3—C2120.3 (2)C3—C9—H9A110.9
C4—C3—C9110.5 (2)C10—C9—H9A110.9
C2—C3—C9129.2 (2)C3—C9—H9B110.9
C3—C4—C5121.3 (2)C10—C9—H9B110.9
C3—C4—N1110.1 (2)H9A—C9—H9B108.9
C5—C4—N1128.6 (2)O2—C8—H8A109.5
O2—C6—C5124.2 (2)O2—C8—H8B109.5
O2—C6—C1115.1 (2)H8A—C8—H8B109.5
C5—C6—C1120.7 (2)O2—C8—H8C109.5
O3—C11—N1121.7 (2)H8A—C8—H8C109.5
O3—C11—C12121.2 (3)H8B—C8—H8C109.5
N1—C11—C12117.1 (3)N1—C10—C9105.6 (2)
C6—C5—C4118.5 (2)N1—C10—H10A110.6
C6—C5—H5120.7C9—C10—H10A110.6
C4—C5—H5120.7N1—C10—H10B110.6
O1—C1—C2125.5 (2)C9—C10—H10B110.6
O1—C1—C6114.8 (2)H10A—C10—H10B108.7
C2—C1—C6119.6 (2)O1—C7—H7A109.5
C3—C2—C1119.5 (2)O1—C7—H7B109.5
C3—C2—H2120.2H7A—C7—H7B109.5
C1—C2—H2120.2O1—C7—H7C109.5
C11—C12—H12A109.5H7A—C7—H7C109.5
C11—C12—H12B109.5H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.952.302.861 (2)117

Experimental details

Crystal data
Chemical formulaC12H15NO3
Mr221.25
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)123
a, b, c (Å)18.541 (4), 6.9572 (15), 8.5582 (17)
V3)1103.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.963, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11013, 1054, 964
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.40
No. of reflections1054
No. of parameters97
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.59

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.952.302.861 (2)117
 

Acknowledgements

The author acknowledges financial support from Zhejiang Police College, China.

References

First citationAmit, B., Ben-Efraim, D. A. & Patchornik, A. (1976). J. Am. Chem. Soc. 98, 834–835.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernandez, V. G., Fernandez-Torres, P. & Gotor, V. (2006). Tetrahedron Asymmetry, 17, 2558–2564.  Google Scholar
First citationKuwano, R., Kashiwabara, M., Sato, K., Ito, T., Kaneda, K. & Ito, Y. (2006). Tetrahedron Asymmetry, 17, 521–535.  Web of Science CrossRef CAS Google Scholar
First citationMoreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., Da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365–373.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds