metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­iodido[methyl­enebis(di­phenyl­phosphine oxide)-κ2O:O′]tin(IV) chloro­form solvate

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 24 April 2008; accepted 7 May 2008; online 7 June 2008)

The title compound, [SnI4(C25H22O2P2)]·CHCl3, crystallized from a chloro­form solution of SnI4 and the diphosphine CH2(PPh2)2 exposed to air. The monomeric complex displays a distorted octa­hedral coordinaton for the tin(IV) atom with average Sn—I and Sn—O bond lengths of 2.79 (2) and 2.15 (1) Å, respectively.

Related literature

For examples of structurally characterized tin(IV)–halide complexes of phosphine oxide ligands, see: Genge et al. (1999[Genge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142-149.]); Davis et al. (2006a[Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006a). Eur. J. Inorg. Chem. pp. 2773-2782.],b[Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006b). Polyhedron, 25, 930-936.]); Mohamed et al. (2004[Mohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, m172-m173.]). For related literature, see: Levason et al. (2003[Levason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem. 688, 280-282.]); Woollins (2003[Woollins, J. D. (2003). Inorganic Experiments: Second, Completely Revised and Enlarged Edition, edited by J. D. Woollins, pp. 36-37. Weinheim: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • [SnI4(C25H22O2P2)]·CHCl3

  • Mr = 1162.02

  • Monoclinic, P 21

  • a = 9.2639 (5) Å

  • b = 19.0609 (11) Å

  • c = 10.1991 (6) Å

  • β = 108.479 (1)°

  • V = 1708.08 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.71 mm−1

  • T = 125 (2) K

  • 0.14 × 0.13 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.558, Tmax = 0.912

  • 20220 measured reflections

  • 7254 independent reflections

  • 6994 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.045

  • S = 1.03

  • 7254 reflections

  • 344 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3512 Friedel pairs

  • Flack parameter: 0.004 (14)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tin(IV) iodide may be readily prepared by oxidation of tin metal with iodine (Woollins, 2003). A relatively weak Lewis acid, SnI4 nevertheless forms complexes with phosphines and phosphine oxides (Genge et al., 1999; Davis et al., 2006a). Similar phosphine and phosphine oxide complexes have been reported of the more Lewis acidic tin(IV) halides, SnX4 (X = F, Cl, Br; Davis et al., 2006a, 2006b; Genge et al., 1999; Mohamed et al., 2004). The phosphine oxide complexes are chiefly obtained by air oxidation of the phosphine ligands in the presence of the tin(IV) halide (Levason et al., 2003).

Reaction of SnI4 with CH2(PPh2)2 in CHCl3 in the presence of air afforded the title complex [{CH2(P(O)Ph2)2}SnI4].CHCl3, (I).

Complex (I) exhibits a distorted octahedral coordination at tin. The bis(phosphine oxide) results in a cis coordination of the ligand, with Sn—O distances of 2.136 (3) and 2.157 (3) Å, and Sn—I distances of 2.7770 (4), 2.7805 (4), 2.7911 (4) and 2.8199 (4) Å. The smallest bond angle about the pseudooctahedral tin center, 81.1 (1)°, corresponds to the O1—Sn—O2 angle of the chelating bis(phosphine oxide) ligand, with the opposite I2—Sn—I3 angle in the SnO2I2 plane being the largest, 100.82 (1)°. These distances and angles are similar to those reported for the related bis(phosphine oxide) complex {o-C6H4(P(O)Ph2)2}SnI4 (Genge et al., 1999). The SnO2P2C six-membered heterocycle in complex (I) is in a distorted boat conformation.

Related literature top

For examples of structurally characterized tin(IV)–halide complexes of phosphine oxide ligands, see: Genge et al. (1999); Davis et al. (2006a,b); Mohamed et al. (2004). For related literature, see: Levason et al. (2003); Woollins (2003).

Experimental top

Complex (I) was prepared by treating a chloroform (ca 5 ml) solution of SnI4 (655 mg, 1.1 mmol) with an excess of CH2(PPh2)2 (922 mg, 2.6 mmol) in the presence of air. Suitable crystals for single crystal X-ray analysis formed within 1 week at room temperature. A small sample of crystals was separated for structural analysis, and the remaining crystals were collected by filtration on a glass frit, washed three times with ca 5 ml of chloroform, and dried briefly under vacuum (yield 659 mg (54%) of a red-orange product). Elemental analysis confirmed that the compound was obtained as the chloroform solvate: anal. calcd. for (I) C, 26.87%; H, 1.99%; N, 0.00%. Found C, 26.97%; H, 1.73%; N, <0.02%. (Elemental analysis performed by Robertson Microlit Laboratories, Madison, NJ, USA.)

Refinement top

H atoms on carbon were included in calculated positions and were refined using a riding model with Uiso(H) = 1.2Ueq(C) of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity.
Tetraiodido[methylenebis(diphenylphosphine oxide)-κ2O:O']tin(IV) chloroform solvate top
Crystal data top
[SnI4(C25H22O2P2)]·CHCl3F(000) = 1076
Mr = 1162.02Dx = 2.259 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9838 reflections
a = 9.2639 (5) Åθ = 2.3–28.3°
b = 19.0609 (11) ŵ = 4.71 mm1
c = 10.1991 (6) ÅT = 125 K
β = 108.479 (1)°Plate, orange
V = 1708.08 (17) Å30.14 × 0.13 × 0.02 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
7254 independent reflections
Radiation source: fine-focus sealed tube6994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.558, Tmax = 0.912k = 2424
20220 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0195P)2 + 0.2278P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
7254 reflectionsΔρmax = 0.73 e Å3
344 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack (1983), 3512 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (14)
Crystal data top
[SnI4(C25H22O2P2)]·CHCl3V = 1708.08 (17) Å3
Mr = 1162.02Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2639 (5) ŵ = 4.71 mm1
b = 19.0609 (11) ÅT = 125 K
c = 10.1991 (6) Å0.14 × 0.13 × 0.02 mm
β = 108.479 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6994 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.912Rint = 0.027
20220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.73 e Å3
S = 1.03Δρmin = 0.50 e Å3
7254 reflectionsAbsolute structure: Flack (1983), 3512 Friedel pairs
344 parametersAbsolute structure parameter: 0.004 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX 2 CCD platform diffractometer. The data was cut off at 0.79 Å because data in the highest resolution range (0.75-0.78 Å) was very incomplete, acting to reduce the overall completeness to 99.4%. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008). One least squares restraint is required for the floating origin of space group P21. All non-hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. EXTI refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.83582 (3)0.791335 (15)0.25375 (3)0.01631 (6)
I10.75473 (3)0.673729 (13)0.38291 (3)0.02340 (7)
I20.98608 (3)0.706487 (16)0.11538 (3)0.02731 (7)
I31.07128 (3)0.821230 (17)0.49436 (3)0.02768 (7)
I40.89066 (3)0.910079 (14)0.11840 (3)0.02389 (7)
P10.54635 (12)0.85261 (5)0.35831 (11)0.0155 (2)
P20.45533 (11)0.79067 (6)0.06921 (10)0.0162 (2)
O10.6960 (3)0.85997 (14)0.3271 (3)0.0178 (6)
O20.6235 (3)0.77647 (14)0.0902 (3)0.0166 (6)
C10.3884 (5)0.8709 (2)0.0204 (4)0.0193 (9)
C20.2576 (5)0.9026 (3)0.0116 (5)0.0329 (11)
H2A0.20420.88270.04500.039*
C30.2044 (6)0.9636 (3)0.0854 (6)0.0420 (13)
H3A0.11510.98590.07890.050*
C40.2817 (7)0.9918 (3)0.1683 (6)0.0487 (15)
H4A0.24531.03360.21870.058*
C50.4107 (6)0.9603 (3)0.1788 (5)0.0372 (13)
H5A0.46250.97980.23710.045*
C60.4650 (5)0.9000 (3)0.1042 (4)0.0272 (10)
H6A0.55510.87840.11020.033*
C70.3424 (5)0.7198 (2)0.0266 (4)0.0187 (9)
C80.2165 (5)0.7324 (3)0.1412 (4)0.0269 (10)
H8A0.18730.77910.16990.032*
C90.1332 (5)0.6761 (3)0.2139 (4)0.0316 (11)
H9A0.04710.68430.29290.038*
C100.1755 (6)0.6084 (3)0.1715 (5)0.0303 (11)
H10A0.11780.57010.22100.036*
C110.3025 (6)0.5957 (3)0.0562 (5)0.0322 (11)
H11A0.33100.54900.02670.039*
C120.3863 (5)0.6516 (2)0.0146 (5)0.0253 (10)
H12A0.47440.64330.09180.030*
C130.4575 (5)0.9369 (2)0.3409 (4)0.0194 (9)
C140.3480 (5)0.9506 (2)0.4051 (5)0.0280 (10)
H14A0.32710.91660.46490.034*
C150.2702 (5)1.0132 (3)0.3818 (6)0.0341 (12)
H15A0.19501.02200.42490.041*
C160.3002 (6)1.0628 (2)0.2971 (5)0.0345 (12)
H16A0.24621.10590.28200.041*
C170.4098 (6)1.0500 (2)0.2331 (5)0.0320 (11)
H17A0.42971.08410.17320.038*
C180.4897 (5)0.9874 (2)0.2569 (5)0.0255 (10)
H18A0.56670.97920.21560.031*
C190.5743 (5)0.8157 (2)0.5259 (4)0.0181 (8)
C200.4710 (5)0.7703 (2)0.5528 (4)0.0218 (9)
H20A0.37600.76150.48410.026*
C210.5063 (5)0.7376 (2)0.6807 (4)0.0244 (10)
H21A0.43480.70690.69980.029*
C220.6457 (6)0.7497 (2)0.7807 (4)0.0285 (10)
H22A0.67040.72640.86740.034*
C230.7478 (5)0.7954 (2)0.7542 (4)0.0272 (10)
H23A0.84260.80380.82350.033*
C240.7148 (5)0.8295 (2)0.6282 (4)0.0255 (9)
H24A0.78530.86150.61100.031*
C250.4202 (4)0.7925 (2)0.2343 (4)0.0168 (8)
H25A0.43350.74470.27400.020*
H25B0.31330.80670.21920.020*
C260.1709 (7)0.5583 (3)0.3620 (5)0.0447 (14)
H26A0.08650.59240.32190.054*
Cl10.3366 (3)0.60552 (10)0.4432 (2)0.1039 (9)
Cl20.19826 (17)0.50905 (9)0.22600 (15)0.0518 (4)
Cl30.11844 (19)0.50376 (8)0.47642 (15)0.0522 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01542 (13)0.01735 (13)0.01582 (13)0.00235 (11)0.00450 (10)0.00282 (10)
I10.02927 (16)0.01839 (14)0.02235 (14)0.00030 (12)0.00790 (12)0.00269 (11)
I20.03002 (16)0.03117 (15)0.02356 (14)0.01382 (13)0.01252 (12)0.00496 (13)
I30.01861 (14)0.03691 (17)0.02288 (14)0.00201 (13)0.00001 (11)0.00444 (13)
I40.02432 (14)0.02220 (14)0.02621 (15)0.00028 (12)0.00951 (12)0.00677 (11)
P10.0163 (5)0.0144 (5)0.0159 (5)0.0010 (4)0.0053 (4)0.0008 (4)
P20.0160 (5)0.0178 (5)0.0132 (5)0.0002 (5)0.0027 (4)0.0005 (4)
O10.0178 (14)0.0193 (15)0.0154 (14)0.0023 (11)0.0041 (11)0.0042 (11)
O20.0173 (14)0.0179 (15)0.0133 (13)0.0013 (11)0.0029 (11)0.0007 (11)
C10.024 (2)0.015 (2)0.016 (2)0.0008 (17)0.0017 (17)0.0056 (16)
C20.021 (2)0.037 (3)0.038 (3)0.006 (2)0.006 (2)0.009 (2)
C30.035 (3)0.037 (3)0.050 (3)0.012 (2)0.006 (3)0.019 (3)
C40.037 (3)0.035 (3)0.060 (4)0.009 (2)0.005 (3)0.023 (3)
C50.034 (3)0.036 (3)0.035 (3)0.009 (2)0.003 (2)0.017 (2)
C60.020 (2)0.034 (3)0.024 (2)0.001 (2)0.0028 (18)0.007 (2)
C70.018 (2)0.022 (2)0.0162 (19)0.0016 (17)0.0069 (16)0.0033 (17)
C80.029 (3)0.027 (2)0.021 (2)0.006 (2)0.0034 (19)0.0019 (18)
C90.030 (3)0.040 (3)0.018 (2)0.006 (2)0.0014 (19)0.000 (2)
C100.033 (3)0.033 (3)0.023 (2)0.011 (2)0.005 (2)0.007 (2)
C110.038 (3)0.025 (3)0.030 (3)0.003 (2)0.006 (2)0.002 (2)
C120.029 (3)0.023 (2)0.019 (2)0.0035 (19)0.0013 (19)0.0034 (18)
C130.017 (2)0.0147 (19)0.023 (2)0.0010 (16)0.0021 (17)0.0006 (17)
C140.026 (2)0.020 (2)0.043 (3)0.0018 (19)0.019 (2)0.005 (2)
C150.026 (3)0.026 (3)0.058 (3)0.000 (2)0.025 (2)0.008 (2)
C160.035 (3)0.016 (2)0.046 (3)0.006 (2)0.004 (2)0.002 (2)
C170.040 (3)0.023 (2)0.033 (3)0.000 (2)0.012 (2)0.004 (2)
C180.030 (2)0.020 (2)0.026 (2)0.0014 (19)0.010 (2)0.0008 (18)
C190.025 (2)0.016 (2)0.0158 (19)0.0014 (17)0.0098 (17)0.0028 (16)
C200.017 (2)0.025 (2)0.024 (2)0.0006 (17)0.0089 (18)0.0023 (17)
C210.028 (2)0.027 (2)0.023 (2)0.0009 (19)0.0145 (19)0.0016 (18)
C220.046 (3)0.027 (2)0.014 (2)0.005 (2)0.011 (2)0.0030 (18)
C230.032 (3)0.033 (3)0.015 (2)0.004 (2)0.0050 (18)0.0048 (19)
C240.026 (2)0.026 (2)0.022 (2)0.0040 (19)0.0036 (18)0.0037 (19)
C250.0190 (19)0.0148 (18)0.0162 (19)0.0010 (18)0.0048 (15)0.0025 (17)
C260.059 (4)0.027 (3)0.036 (3)0.003 (3)0.002 (3)0.010 (2)
Cl10.1176 (17)0.0573 (12)0.0806 (14)0.0501 (12)0.0484 (12)0.0197 (10)
Cl20.0441 (8)0.0688 (10)0.0441 (8)0.0007 (7)0.0161 (7)0.0017 (7)
Cl30.0719 (10)0.0461 (8)0.0415 (8)0.0182 (8)0.0221 (7)0.0119 (7)
Geometric parameters (Å, º) top
Sn—O12.136 (3)C10—H10A0.9500
Sn—O22.157 (3)C11—C121.379 (6)
Sn—I32.7770 (4)C11—H11A0.9500
Sn—I42.7805 (4)C12—H12A0.9500
Sn—I22.7911 (4)C13—C181.383 (6)
Sn—I12.8199 (4)C13—C141.395 (6)
P1—O11.524 (3)C14—C151.375 (7)
P1—C131.788 (4)C14—H14A0.9500
P1—C191.790 (4)C15—C161.366 (7)
P1—C251.828 (4)C15—H15A0.9500
P2—O21.527 (3)C16—C171.392 (7)
P2—C11.788 (4)C16—H16A0.9500
P2—C71.795 (4)C17—C181.383 (6)
P2—C251.814 (4)C17—H17A0.9500
C1—C21.383 (6)C18—H18A0.9500
C1—C61.388 (6)C19—C201.381 (6)
C2—C31.389 (7)C19—C241.411 (6)
C2—H2A0.9500C20—C211.387 (6)
C3—C41.378 (8)C20—H20A0.9500
C3—H3A0.9500C21—C221.388 (6)
C4—C51.372 (8)C21—H21A0.9500
C4—H4A0.9500C22—C231.375 (7)
C5—C61.382 (7)C22—H22A0.9500
C5—H5A0.9500C23—C241.385 (6)
C6—H6A0.9500C23—H23A0.9500
C7—C81.386 (6)C24—H24A0.9500
C7—C121.387 (6)C25—H25A0.9900
C8—C91.391 (6)C25—H25B0.9900
C8—H8A0.9500C26—Cl31.742 (6)
C9—C101.377 (7)C26—Cl11.746 (6)
C9—H9A0.9500C26—Cl21.758 (6)
C10—C111.397 (7)C26—H26A1.0000
O1—Sn—O281.11 (10)C9—C10—H10A119.8
O1—Sn—I387.62 (7)C11—C10—H10A119.8
O2—Sn—I3168.16 (7)C12—C11—C10119.4 (4)
O1—Sn—I484.36 (8)C12—C11—H11A120.3
O2—Sn—I489.34 (7)C10—C11—H11A120.3
I3—Sn—I493.196 (12)C11—C12—C7120.2 (4)
O1—Sn—I2170.71 (7)C11—C12—H12A119.9
O2—Sn—I290.68 (7)C7—C12—H12A119.9
I3—Sn—I2100.824 (13)C18—C13—C14119.5 (4)
I4—Sn—I291.247 (12)C18—C13—P1120.3 (3)
O1—Sn—I192.43 (8)C14—C13—P1120.1 (3)
O2—Sn—I186.79 (7)C15—C14—C13120.0 (4)
I3—Sn—I190.070 (12)C15—C14—H14A120.0
I4—Sn—I1175.320 (14)C13—C14—H14A120.0
I2—Sn—I191.431 (12)C16—C15—C14120.6 (4)
O1—P1—C13108.51 (18)C16—C15—H15A119.7
O1—P1—C19111.71 (18)C14—C15—H15A119.7
C13—P1—C19111.74 (19)C15—C16—C17120.0 (4)
O1—P1—C25109.74 (17)C15—C16—H16A120.0
C13—P1—C25108.71 (19)C17—C16—H16A120.0
C19—P1—C25106.37 (19)C18—C17—C16119.9 (4)
O2—P2—C1113.34 (18)C18—C17—H17A120.1
O2—P2—C7109.60 (18)C16—C17—H17A120.1
C1—P2—C7108.48 (19)C13—C18—C17120.0 (4)
O2—P2—C25110.39 (17)C13—C18—H18A120.0
C1—P2—C25108.8 (2)C17—C18—H18A120.0
C7—P2—C25105.94 (19)C20—C19—C24120.3 (4)
P1—O1—Sn135.20 (17)C20—C19—P1122.4 (3)
P2—O2—Sn136.45 (16)C24—C19—P1117.0 (3)
C2—C1—C6119.7 (4)C19—C20—C21119.7 (4)
C2—C1—P2120.7 (3)C19—C20—H20A120.1
C6—C1—P2119.6 (3)C21—C20—H20A120.1
C1—C2—C3119.9 (5)C20—C21—C22120.3 (4)
C1—C2—H2A120.0C20—C21—H21A119.8
C3—C2—H2A120.0C22—C21—H21A119.8
C4—C3—C2119.7 (5)C23—C22—C21119.9 (4)
C4—C3—H3A120.2C23—C22—H22A120.1
C2—C3—H3A120.2C21—C22—H22A120.1
C5—C4—C3120.8 (5)C22—C23—C24121.1 (4)
C5—C4—H4A119.6C22—C23—H23A119.5
C3—C4—H4A119.6C24—C23—H23A119.5
C4—C5—C6119.7 (5)C23—C24—C19118.7 (4)
C4—C5—H5A120.1C23—C24—H24A120.7
C6—C5—H5A120.1C19—C24—H24A120.7
C5—C6—C1120.2 (4)P2—C25—P1113.0 (2)
C5—C6—H6A119.9P2—C25—H25A109.0
C1—C6—H6A119.9P1—C25—H25A109.0
C8—C7—C12120.3 (4)P2—C25—H25B109.0
C8—C7—P2121.2 (3)P1—C25—H25B109.0
C12—C7—P2118.4 (3)H25A—C25—H25B107.8
C7—C8—C9119.5 (4)Cl3—C26—Cl1112.4 (3)
C7—C8—H8A120.2Cl3—C26—Cl2110.5 (3)
C9—C8—H8A120.2Cl1—C26—Cl2108.9 (4)
C10—C9—C8120.0 (4)Cl3—C26—H26A108.3
C10—C9—H9A120.0Cl1—C26—H26A108.3
C8—C9—H9A120.0Cl2—C26—H26A108.3
C9—C10—C11120.4 (4)
C13—P1—O1—Sn154.2 (2)C9—C10—C11—C120.5 (8)
C19—P1—O1—Sn82.2 (3)C10—C11—C12—C71.6 (7)
C25—P1—O1—Sn35.5 (3)C8—C7—C12—C111.7 (7)
O2—Sn—O1—P154.1 (2)P2—C7—C12—C11179.9 (4)
I3—Sn—O1—P1122.2 (2)O1—P1—C13—C1824.9 (4)
I4—Sn—O1—P1144.3 (2)C19—P1—C13—C18148.5 (4)
I1—Sn—O1—P132.3 (2)C25—P1—C13—C1894.4 (4)
C1—P2—O2—Sn97.2 (3)O1—P1—C13—C14159.1 (3)
C7—P2—O2—Sn141.4 (2)C19—P1—C13—C1435.5 (4)
C25—P2—O2—Sn25.1 (3)C25—P1—C13—C1481.6 (4)
O1—Sn—O2—P216.7 (2)C18—C13—C14—C151.7 (7)
I3—Sn—O2—P21.4 (6)P1—C13—C14—C15174.3 (4)
I4—Sn—O2—P2101.1 (2)C13—C14—C15—C160.7 (8)
I2—Sn—O2—P2167.6 (2)C14—C15—C16—C170.3 (8)
I1—Sn—O2—P276.2 (2)C15—C16—C17—C180.9 (8)
O2—P2—C1—C2159.9 (3)C14—C13—C18—C172.3 (7)
C7—P2—C1—C278.1 (4)P1—C13—C18—C17173.7 (3)
C25—P2—C1—C236.7 (4)C16—C17—C18—C131.9 (7)
O2—P2—C1—C622.7 (4)O1—P1—C19—C20144.0 (3)
C7—P2—C1—C699.3 (4)C13—P1—C19—C2094.2 (4)
C25—P2—C1—C6145.9 (3)C25—P1—C19—C2024.3 (4)
C6—C1—C2—C30.5 (7)O1—P1—C19—C2430.0 (4)
P2—C1—C2—C3177.9 (4)C13—P1—C19—C2491.8 (4)
C1—C2—C3—C40.6 (8)C25—P1—C19—C24149.7 (3)
C2—C3—C4—C50.1 (9)C24—C19—C20—C210.6 (6)
C3—C4—C5—C60.8 (9)P1—C19—C20—C21173.2 (3)
C4—C5—C6—C10.9 (8)C19—C20—C21—C220.8 (7)
C2—C1—C6—C50.3 (7)C20—C21—C22—C231.5 (7)
P2—C1—C6—C5177.1 (4)C21—C22—C23—C240.6 (7)
O2—P2—C7—C8130.5 (4)C22—C23—C24—C190.8 (7)
C1—P2—C7—C86.3 (4)C20—C19—C24—C231.4 (6)
C25—P2—C7—C8110.4 (4)P1—C19—C24—C23172.7 (3)
O2—P2—C7—C1247.8 (4)O2—P2—C25—P152.7 (3)
C1—P2—C7—C12172.0 (3)C1—P2—C25—P172.2 (3)
C25—P2—C7—C1271.3 (4)C7—P2—C25—P1171.3 (2)
C12—C7—C8—C90.8 (7)O1—P1—C25—P227.7 (3)
P2—C7—C8—C9179.1 (3)C13—P1—C25—P290.8 (3)
C7—C8—C9—C100.3 (7)C19—P1—C25—P2148.7 (2)
C8—C9—C10—C110.5 (7)

Experimental details

Crystal data
Chemical formula[SnI4(C25H22O2P2)]·CHCl3
Mr1162.02
Crystal system, space groupMonoclinic, P21
Temperature (K)125
a, b, c (Å)9.2639 (5), 19.0609 (11), 10.1991 (6)
β (°) 108.479 (1)
V3)1708.08 (17)
Z2
Radiation typeMo Kα
µ (mm1)4.71
Crystal size (mm)0.14 × 0.13 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.558, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
20220, 7254, 6994
Rint0.027
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.046, 1.03
No. of reflections7254
No. of parameters344
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.50
Absolute structureFlack (1983), 3512 Friedel pairs
Absolute structure parameter0.004 (14)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006a). Eur. J. Inorg. Chem. pp. 2773–2782.  Web of Science CSD CrossRef Google Scholar
First citationDavis, M. F., Levason, W., Reid, G. & Webster, M. (2006b). Polyhedron, 25, 930–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGenge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem. 688, 280–282.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, m172–m173.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoollins, J. D. (2003). Inorganic Experiments: Second, Completely Revised and Enlarged Edition, edited by J. D. Woollins, pp. 36–37. Weinheim: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds