metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m886-m887

Di-μ-oxido-bis­­{[(R,R)-(+)-1-amino-2-(3-meth­oxy-2-oxido­benzyl­­idene­amino-κ2O2,N)-1,2-di­phenyl­ethane-κN]oxidovanadium(V)} dihydrate

aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland, and bUniversity of Wroclaw, Faculty of Chemistry, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
*Correspondence e-mail: greg@chem.univ.gda.pl

(Received 31 March 2008; accepted 13 May 2008; online 7 June 2008)

In the crystal structure of the title compound, [V2(C22H21N2O2)2O4]·2H2O, oxide-bridged dimers of the complex are linked to water mol­ecules by hydrogen-bonding inter­actions. The two five-membered chelate rings in the dimeric mol­ecule both adopt twist conformations. Each VV atom is six-coordinated by one oxide group and by two N and one O atom of the tridentate Schiff base ligand, and is bridged by two additional oxide atoms. The metal centre has a distorted octa­hedral coordination. The monoanionic ligands occupy one equatorial and two axial positions.

Related literature

For general background, see: Robinson et al. (1986[Robinson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M. & Postgate, J. R. (1986). Nature (London), 322, 388-390.]); Vilter (1984[Vilter, H. (1984). Phytochemistry, 23, 1387-1390.]); Gruning & Rehder (2000[Gruning, C. & Rehder, D. (2000). J. Inorg. Biochem. 80, 185-189.]); Casny & Rehder (2001[Casny, M. & Rehder, D. (2001). Chem. Commun. pp. 921-922.]); Kimblin et al. (2002[Kimblin, C., Bu, X. & Butler, A. (2002). Inorg. Chem. 41, 161-163.]); Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.], 2007[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559-2568.]); Romanowski et al. (2008[Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601-1609.]); Wever & Hemrika (1997[Wever, R. & Hemrika, H. (1997). In Vanadium in the Environment, Part 1, Chemistry and Biochemistry, edited by J. O. Nriagu, p. 309. New York: Wiley.]); Butler & Carter-Franklin (2004[Butler, A. & Carter-Franklin, J. N. (2004). Nat. Prod. Rep. 21, 180-188.]). For related structures, see: Root et al. (1993[Root, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3855-3861.]); Romanowski et al. (2008[Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601-1609.]); Colpas et al. (1994[Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669-4675.]); Li et al. (1988[Li, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657-4664.]). For the synthesis, see: Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.]).

[Scheme 1]

Experimental

Crystal data
  • [V2(C22H21N2O2)2O4]·2H2O

  • Mr = 892.73

  • Orthorhombic, P 21 21 21

  • a = 9.328 (4) Å

  • b = 16.950 (7) Å

  • c = 25.490 (10) Å

  • V = 4030 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.44 mm−1

  • T = 100 (2) K

  • 0.14 × 0.12 × 0.09 mm

Data collection
  • Oxford Xcalibur PX diffractometer with CCD area-detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.627, Tmax = 0.768

  • 27320 measured reflections

  • 7083 independent reflections

  • 3677 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.069

  • S = 1.01

  • 7083 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2905 Friedel pairs

  • Flack parameter: −0.007 (9)

Table 1
Selected bond lengths (Å)

V27A—O7A 1.908 (4)
V27A—O28A 1.607 (4)
V27A—O29A 1.703 (4)
V27A—O29 2.263 (4)
V27A—N11A 2.163 (5)
V27A—N14A 2.147 (5)
V27—O7 1.904 (4)
V27—O28 1.610 (4)
V27—O29 1.694 (3)
V27—O29A 2.247 (4)
V27—N11 2.179 (5)
V27—N14 2.135 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14A⋯O7A 0.92 2.20 2.946 (6) 138
N14A—H14D⋯O7 0.92 2.02 2.855 (6) 151
O1W—H1W1⋯O29A 0.84 2.14 2.795 (6) 134
O2W—H1W2⋯O29 0.84 2.04 2.834 (7) 158
C3—H3⋯O1Wi 0.95 2.52 3.431 (8) 160
C3A—H3A⋯O2Wii 0.95 2.52 3.424 (9) 159
C10A—H10A⋯O28iii 0.95 2.48 3.075 (7) 120
C13A—H13A⋯O29 1.00 2.53 3.057 (7) 113
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The discovery of vanadium in active sites of biological systems of nitrogenase (Robinson et al., 1986) and bromoperoxidase (Vilter, 1984) and recognition of its environment increased the interest in the vanadium complexes with ligands bearing oxygen and nitrogen atoms for mimicking the biological activity in natural systems. Structural models for the active site in haloperoxidases have already been reported (Gruning & Rehder, 2000; Casny & Rehder, 2001; Kimblin et al., 2002). Recently, it has been established that vanadium(V) complexes with Schiff bases, which are excellent models for active sites of vanadium containing haloperoxidases, are able to catalyze the oxidation of organic sulfides to the corresponding sulfoxides (Kwiatkowski et al., 2003, 2007; Romanowski et al., 2008). Vanadium haloperoxidases catalyze the oxidation of halides in the presence of hydrogen peroxide to highly reactive intermediate, a hypohalous acid, which may react either with suitable nucleophilic acceptor, if present, forming a halogenated compound or with hydrogen peroxide yielding 1O2 (Wever & Hemrika, 1997). Lately, it has been shown that vanadium bromoperoxidase from marine red algae can catalyze the bromination and cyclization of terpene substrates or the selective sulfoxidation of sulfides to the sulfoxides (Butler & Carter-Franklin, 2004).

The structure of (I) indicates that each vanadium atom is six-coordinated. The vanadium atoms V27 and V27A are joined together through two oxygen bridges, O29 and O29A being the bridging atoms coordinated to vanadium atoms at short and long distances (Table 1 and Fig. 1). The coordination sphere around each vanadium atom is composed of phenolate oxygen atoms (O7 or O7A) and of primary amine nitrogen atom (N14 or N14A) occupying axial positions and of imine nitrogen atom (N11 or N11A), two strongly coordinated terminal oxo (O28, O29 or O28A, O29A) and one weakly associated oxo group (O29A or O29) derived from the neighbouring VO2 unit defining the equatorial plane. The polyhedron that describes the quadrilateral core consisting of the V2O2 unit and the spatial arrangement of remaining coordinated atoms resembles two edge shared octahedrons that are significantly distorted. The V27=O28 and V27A=O28A bond lengths of 1.616 (4) and 1.612 (4) Å respectively compare well with the distances between vanadium and the doubly bonded oxygen atoms (Root et al., 1993; Romanowski et al., 2008). The V27—O29 and V27A—O29A bonds (average 1.696 (4) Å) are longer than V27—O28 and V27A—O28A bonds (average 1.614 (4) Å) due to involvement of O29 and O29A atoms in V27—V27A bridging and hydrogen bonding interactions with water molecules. The V27—V27A distance of 3.057 (2) Å is much shorter than the V(V)—V(V) distance of 3.204 Å found in similar complex (Romanowski et al., 2008). The O28—V27—O29 and O28A—V27A—O29A angles of 105.6 (2)° and 104.6 (2)° respectively indicate significant double bond character of these bonds (Colpas et al., 1994) and are close to other cis-VO2 units (Li et al., 1988). The two five-membered chelate rings adopt twisted conformations, while in similar dimeric vanadium(V) complex adopt differently puckered envelope conformations (Romanowski et al., 2008). The rings defined by V27, N11, C12, C13, N14 and V27A, N11A, C12A, C13A, N14A choose twisted conformation on C12, C13 and C12A, C13A, respectively.

The crystal structure of (I) is stabilized by intermolecular hydrogen bonds linking dimeric molecules both directly by N—H···O interactions and indirectly through water molecules by O···H—O—H interactions (Fig. 2, Table 2).

Related literature top

For general background, see: Robinson et al. (1986); Vilter (1984); Gruning & Rehder (2000); Casny & Rehder (2001); Kimblin et al. (2002); Kwiatkowski et al. (2003, 2007); Romanowski et al. (2008); Wever & Hemrika (1997); Butler & Carter-Franklin (2004). For related structures, see: Root et al. (1993); Romanowski et al. (2008); Colpas et al. (1994); Li et al. (1988). For the synthesis, see: Kwiatkowski et al. (2003).

Experimental top

The complex (I) were obtained in a template/complexation reactions analogous to those described for preparation of dioxovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A solution of 1 mmol of (R,R)-(+)-1,2-diphenyl-1,2-diaminoethane in 10 ml of absolute ethanol was added under stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (1 mmol) in 50 ml of absolute EtOH producing a yellow suspension of the intermediate. 3-Methoxysalicylaldehyde (1 mmol) dissolved in absolute EtOH was added to the aforementioned suspension. After refluxing (70 ml) of the resulting mixture for 2 h and its cooling to room temperature the separated solids were filtered off, washed several times with EtOH, recrystallized from DMSO-EtOH mixture and dried over molecular sieves.

Refinement top

All C bonded H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–1.00 Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group). All remaining H atoms were found in difference Fourier maps and their positions were refined initially with O–H and N–H bond lengths restricted to be 0.92 and 0.84 Å, respectively. In the final stages of refinement these H atoms were constrained to ride on their parent atoms using AFIX 23 and AFIX 3, respectively; (Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O)). One H atom from each water molecule is not involved in any hydrogen bonds; an observation confirmed by its IR spectrum which shows a single sharp band at 935 cm-1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 15% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The structure of (I) with water molecules showing hydrogen bonding arrangement.
Di-µ-oxido-bis{[(R,R)-(+)-1-amino-2-(3-methoxy-2- oxidobenzylideneamino-κ2O2,N)-1,2-diphenylethane- κN]oxidovanadium(V)} dihydrate top
Crystal data top
[V2(C22H21N2O2)2O4]·2H2OF(000) = 1856
Mr = 892.73Dx = 1.471 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 12243 reflections
a = 9.328 (4) Åθ = 3–70°
b = 16.950 (7) ŵ = 4.44 mm1
c = 25.49 (1) ÅT = 100 K
V = 4030 (3) Å3Multifaced, violet
Z = 40.14 × 0.12 × 0.09 mm
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area-detector
7083 independent reflections
Radiation source: fine-focus sealed tube3677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω and ϕ scansθmax = 76.5°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1011
Tmin = 0.627, Tmax = 0.768k = 1920
27320 measured reflectionsl = 2031
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.009P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
7083 reflectionsΔρmax = 0.64 e Å3
541 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 2905 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (9)
Crystal data top
[V2(C22H21N2O2)2O4]·2H2OV = 4030 (3) Å3
Mr = 892.73Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.328 (4) ŵ = 4.44 mm1
b = 16.950 (7) ÅT = 100 K
c = 25.49 (1) Å0.14 × 0.12 × 0.09 mm
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area-detector
7083 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
3677 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.768Rint = 0.066
27320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.64 e Å3
S = 1.01Δρmin = 0.39 e Å3
7083 reflectionsAbsolute structure: Flack (1983), 2905 Friedel pairs
541 parametersAbsolute structure parameter: 0.007 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V27A0.32884 (10)0.48070 (7)0.48510 (4)0.0321 (3)
V270.64395 (9)0.51515 (7)0.50926 (4)0.0315 (3)
O28A0.2087 (4)0.4322 (2)0.45349 (16)0.0364 (12)
O280.7674 (4)0.5616 (2)0.54082 (16)0.0351 (12)
O29A0.4860 (4)0.4571 (3)0.45501 (15)0.0319 (12)
O290.4883 (3)0.5398 (3)0.53930 (15)0.0292 (11)
O7A0.3123 (4)0.5855 (2)0.45846 (15)0.0300 (11)
C1A0.2145 (6)0.6399 (4)0.4629 (2)0.0276 (16)
C2A0.2227 (6)0.7066 (4)0.4286 (2)0.0267 (16)
C3A0.1167 (6)0.7649 (4)0.4295 (2)0.0291 (17)
H3A0.12020.80720.40510.035*
C4A0.0064 (6)0.7611 (4)0.4659 (3)0.0320 (18)
H4A0.06590.80060.46640.038*
C5A0.0025 (5)0.7001 (4)0.5010 (2)0.0263 (17)
H5A0.07160.69870.52660.032*
C6A0.1035 (5)0.6405 (3)0.5004 (2)0.0211 (14)
O8A0.3392 (4)0.7063 (3)0.39578 (15)0.0332 (12)
C9A0.3526 (7)0.7745 (4)0.3617 (2)0.0395 (19)
H9D0.43980.76950.34050.059*
H9E0.35840.82250.38310.059*
H9F0.26890.77760.33860.059*
C10A0.0956 (6)0.5785 (4)0.5396 (2)0.0296 (17)
H10A0.02190.58350.56510.036*
N11A0.1760 (5)0.5186 (3)0.54371 (16)0.0256 (12)
C12A0.1482 (5)0.4612 (3)0.58662 (19)0.0311 (14)
H12A0.08700.41830.57150.037*
C15A0.0728 (6)0.4914 (4)0.6338 (2)0.0291 (16)
C20A0.1342 (6)0.5481 (4)0.6645 (2)0.0367 (17)
H20A0.22600.56810.65540.044*
C19A0.0649 (7)0.5771 (4)0.7088 (2)0.052 (2)
H19A0.10900.61690.72950.063*
C18A0.0669 (8)0.5481 (4)0.7227 (3)0.053 (2)
H18A0.11160.56620.75390.063*
C17A0.1363 (7)0.4922 (5)0.6913 (2)0.057 (2)
H17A0.22930.47310.69960.068*
C16A0.0610 (6)0.4657 (4)0.6467 (2)0.043 (2)
H16A0.10580.42800.62450.051*
C13A0.2980 (6)0.4236 (3)0.5991 (2)0.0299 (16)
H13A0.36230.46640.61240.036*
N14A0.3554 (5)0.3965 (3)0.54722 (18)0.0324 (14)
H14C0.30970.35040.53800.039*
H14D0.45140.38540.55080.039*
C21A0.2923 (6)0.3601 (4)0.6398 (2)0.0282 (17)
C26A0.3591 (7)0.3697 (4)0.6877 (2)0.0386 (16)
H26A0.41200.41670.69370.046*
C25A0.3528 (8)0.3160 (4)0.7261 (2)0.050 (2)
H25A0.40120.32430.75850.060*
C24A0.2750 (7)0.2486 (4)0.7177 (3)0.051 (2)
H24A0.26920.21050.74490.061*
C23A0.2058 (6)0.2345 (4)0.6716 (2)0.0465 (18)
H23A0.15500.18670.66590.056*
C22A0.2121 (6)0.2926 (4)0.6331 (2)0.0440 (19)
H22A0.15990.28560.60150.053*
O70.6590 (4)0.4115 (2)0.53751 (16)0.0315 (11)
C10.7654 (6)0.3571 (4)0.5352 (2)0.0274 (16)
C20.7597 (6)0.2964 (4)0.5720 (2)0.0259 (16)
C30.8644 (6)0.2387 (4)0.5706 (2)0.0292 (16)
H30.86260.19710.59550.035*
C40.9722 (6)0.2413 (4)0.5331 (3)0.038 (2)
H41.04440.20170.53280.046*
C50.9748 (6)0.3004 (4)0.4967 (2)0.0367 (18)
H51.04850.30140.47090.044*
C60.8726 (6)0.3580 (3)0.4969 (2)0.0224 (14)
O80.6476 (4)0.2980 (3)0.60580 (15)0.0332 (12)
C90.6331 (6)0.2312 (4)0.6400 (2)0.043 (2)
H9A0.54820.23800.66230.065*
H9B0.71860.22670.66220.065*
H9C0.62250.18310.61900.065*
C100.8681 (6)0.4112 (4)0.4535 (2)0.0279 (16)
H100.93460.40190.42600.033*
N110.7841 (4)0.4701 (3)0.44777 (18)0.0287 (13)
C120.7728 (5)0.5126 (3)0.39691 (19)0.0315 (14)
H120.68910.48970.37770.038*
C150.9029 (5)0.5043 (4)0.3612 (2)0.0243 (16)
C200.8946 (7)0.4590 (4)0.3158 (2)0.044 (2)
H200.80830.43180.30780.053*
C191.0104 (7)0.4531 (4)0.2821 (3)0.049 (2)
H191.00400.42210.25110.059*
C181.1345 (7)0.4925 (4)0.2941 (2)0.0430 (18)
H181.21350.48950.27070.052*
C171.1468 (6)0.5357 (4)0.3387 (2)0.0507 (19)
H171.23370.56220.34710.061*
C161.0299 (6)0.5401 (4)0.3714 (2)0.046 (2)
H161.03860.56990.40280.055*
C130.7381 (5)0.5996 (3)0.4075 (2)0.0260 (15)
H130.82670.62490.42180.031*
N140.6256 (5)0.6028 (3)0.44947 (18)0.0320 (14)
H14A0.53710.59780.43390.038*
H14B0.62900.65170.46510.038*
C210.7018 (6)0.6405 (4)0.3576 (2)0.0288 (17)
C260.5853 (6)0.6156 (4)0.3278 (2)0.0420 (19)
H260.52770.57360.34050.050*
C250.5504 (7)0.6501 (4)0.2800 (2)0.0512 (19)
H250.46930.63370.26020.061*
C240.6411 (8)0.7102 (5)0.2627 (2)0.056 (2)
H240.62250.73300.22930.067*
C230.7545 (7)0.7383 (5)0.2906 (3)0.068 (3)
H230.81160.78050.27780.082*
C220.7839 (6)0.7026 (4)0.3390 (2)0.050 (2)
H220.86170.72140.35950.060*
O1W0.4465 (5)0.4178 (3)0.3495 (2)0.0770 (18)
H1W10.41210.43970.37620.115*
H2W10.48210.37340.35640.115*
O2W0.5401 (7)0.5739 (4)0.6465 (2)0.132 (3)
H1W20.52920.57690.61380.199*
H2W20.62600.56720.65530.199*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V27A0.0266 (6)0.0352 (7)0.0346 (6)0.0044 (5)0.0053 (5)0.0018 (7)
V270.0244 (5)0.0340 (7)0.0361 (6)0.0034 (5)0.0068 (5)0.0017 (6)
O28A0.030 (2)0.039 (3)0.040 (3)0.003 (2)0.002 (2)0.001 (2)
O280.027 (2)0.042 (3)0.036 (3)0.008 (2)0.002 (2)0.010 (2)
O29A0.029 (2)0.029 (3)0.038 (3)0.003 (2)0.011 (2)0.003 (2)
O290.024 (2)0.028 (3)0.036 (3)0.004 (2)0.0124 (19)0.001 (2)
O7A0.022 (2)0.034 (3)0.035 (3)0.002 (2)0.012 (2)0.005 (2)
C1A0.028 (4)0.025 (4)0.030 (4)0.000 (3)0.002 (3)0.006 (3)
C2A0.020 (3)0.028 (4)0.032 (4)0.005 (3)0.001 (3)0.001 (4)
C3A0.025 (3)0.029 (4)0.033 (4)0.001 (3)0.006 (3)0.004 (3)
C4A0.025 (3)0.039 (5)0.031 (4)0.004 (3)0.001 (3)0.008 (4)
C5A0.016 (3)0.035 (5)0.028 (4)0.005 (3)0.007 (3)0.002 (4)
C6A0.017 (3)0.024 (4)0.022 (3)0.006 (3)0.005 (3)0.004 (3)
O8A0.024 (2)0.036 (3)0.040 (3)0.001 (2)0.013 (2)0.001 (2)
C9A0.053 (4)0.036 (5)0.030 (4)0.002 (4)0.005 (4)0.017 (3)
C10A0.026 (3)0.040 (5)0.024 (3)0.013 (3)0.004 (3)0.014 (3)
N11A0.028 (3)0.020 (3)0.028 (3)0.005 (3)0.001 (2)0.004 (3)
C12A0.034 (3)0.034 (4)0.026 (3)0.003 (3)0.006 (3)0.009 (3)
C15A0.031 (3)0.031 (5)0.025 (3)0.001 (3)0.002 (3)0.001 (3)
C20A0.030 (4)0.044 (4)0.036 (4)0.007 (3)0.002 (3)0.007 (3)
C19A0.068 (5)0.052 (5)0.036 (4)0.026 (4)0.001 (4)0.004 (4)
C18A0.061 (5)0.058 (6)0.039 (5)0.025 (4)0.026 (4)0.003 (4)
C17A0.054 (4)0.072 (6)0.044 (4)0.011 (5)0.017 (4)0.002 (5)
C16A0.035 (4)0.050 (5)0.044 (5)0.001 (4)0.004 (3)0.011 (4)
C13A0.024 (3)0.035 (4)0.030 (4)0.009 (3)0.001 (3)0.006 (3)
N14A0.025 (3)0.038 (4)0.034 (3)0.006 (3)0.003 (3)0.006 (3)
C21A0.023 (3)0.030 (4)0.032 (4)0.013 (3)0.000 (3)0.002 (3)
C26A0.051 (4)0.024 (4)0.040 (4)0.004 (4)0.000 (4)0.001 (3)
C25A0.073 (6)0.046 (5)0.031 (4)0.001 (5)0.007 (4)0.005 (4)
C24A0.057 (5)0.060 (6)0.037 (5)0.013 (5)0.027 (4)0.014 (4)
C23A0.045 (4)0.047 (5)0.048 (4)0.004 (4)0.004 (3)0.012 (4)
C22A0.038 (4)0.049 (5)0.045 (4)0.002 (3)0.004 (3)0.005 (4)
O70.016 (2)0.035 (3)0.044 (3)0.008 (2)0.005 (2)0.006 (2)
C10.018 (3)0.031 (4)0.033 (4)0.002 (3)0.006 (3)0.008 (4)
C20.026 (4)0.020 (4)0.032 (4)0.001 (3)0.004 (3)0.000 (4)
C30.032 (4)0.028 (4)0.027 (4)0.005 (4)0.002 (3)0.001 (3)
C40.022 (3)0.043 (5)0.050 (5)0.013 (4)0.007 (3)0.006 (4)
C50.036 (4)0.041 (5)0.033 (5)0.004 (4)0.008 (4)0.003 (4)
C60.019 (3)0.020 (3)0.028 (4)0.008 (3)0.000 (3)0.005 (3)
O80.025 (2)0.040 (3)0.035 (3)0.001 (2)0.015 (2)0.003 (2)
C90.041 (4)0.056 (6)0.033 (4)0.003 (4)0.005 (3)0.011 (4)
C100.022 (3)0.029 (4)0.033 (4)0.003 (3)0.009 (3)0.010 (3)
N110.024 (3)0.031 (3)0.031 (3)0.002 (3)0.005 (2)0.005 (3)
C120.023 (3)0.046 (4)0.025 (3)0.006 (3)0.002 (2)0.005 (3)
C150.019 (3)0.030 (4)0.024 (3)0.002 (3)0.003 (2)0.003 (3)
C200.036 (4)0.058 (5)0.038 (4)0.001 (4)0.000 (3)0.000 (4)
C190.048 (4)0.068 (6)0.031 (4)0.016 (4)0.007 (4)0.013 (4)
C180.039 (4)0.053 (5)0.037 (4)0.009 (4)0.014 (3)0.009 (4)
C170.045 (4)0.064 (5)0.043 (4)0.009 (4)0.019 (4)0.010 (4)
C160.019 (3)0.075 (6)0.044 (4)0.002 (4)0.006 (3)0.019 (4)
C130.021 (3)0.029 (4)0.028 (3)0.001 (3)0.006 (3)0.001 (3)
N140.029 (3)0.025 (4)0.043 (3)0.007 (3)0.004 (3)0.004 (3)
C210.017 (3)0.046 (5)0.023 (4)0.002 (3)0.002 (3)0.007 (3)
C260.032 (4)0.062 (5)0.032 (4)0.015 (4)0.005 (3)0.004 (4)
C250.049 (5)0.067 (5)0.037 (4)0.018 (4)0.011 (4)0.000 (4)
C240.058 (5)0.087 (7)0.023 (4)0.023 (5)0.016 (4)0.019 (4)
C230.038 (5)0.107 (8)0.060 (6)0.003 (5)0.010 (4)0.037 (5)
C220.031 (4)0.078 (6)0.040 (4)0.001 (4)0.006 (3)0.022 (4)
O1W0.094 (4)0.058 (4)0.078 (5)0.009 (3)0.023 (3)0.003 (3)
O2W0.171 (6)0.149 (7)0.076 (5)0.062 (5)0.006 (4)0.002 (5)
Geometric parameters (Å, º) top
V27A—O7A1.908 (4)C24A—H24A0.9500
V27A—O28A1.607 (4)C23A—C22A1.391 (7)
V27A—O29A1.703 (4)C23A—H23A0.9500
V27A—O292.263 (4)C22A—H22A0.9500
V27A—N11A2.163 (5)O7—C11.356 (7)
V27A—N14A2.147 (5)C1—C21.393 (8)
V27A—V273.0595 (17)C1—C61.398 (7)
V27—O71.904 (4)C2—O81.356 (6)
V27—O281.610 (4)C2—C31.382 (8)
V27—O291.694 (3)C3—C41.388 (8)
V27—O29A2.247 (4)C3—H30.9500
V27—N112.179 (5)C4—C51.367 (8)
V27—N142.135 (5)C4—H40.9500
O7A—C1A1.302 (7)C5—C61.365 (8)
C1A—C6A1.409 (8)C5—H50.9500
C1A—C2A1.431 (8)C6—C101.428 (7)
C2A—O8A1.371 (6)O8—C91.437 (6)
C2A—C3A1.399 (8)C9—H9A0.9800
C3A—C4A1.386 (8)C9—H9B0.9800
C3A—H3A0.9500C9—H9C0.9800
C4A—C5A1.369 (8)C10—N111.276 (7)
C4A—H4A0.9500C10—H100.9500
C5A—C6A1.382 (7)N11—C121.487 (6)
C5A—H5A0.9500C12—C151.523 (6)
C6A—C10A1.453 (8)C12—C131.535 (7)
O8A—C9A1.451 (6)C12—H121.0000
C9A—H9D0.9800C15—C161.357 (7)
C9A—H9E0.9800C15—C201.391 (7)
C9A—H9F0.9800C20—C191.383 (8)
C10A—N11A1.267 (7)C20—H200.9500
C10A—H10A0.9500C19—C181.371 (8)
N11A—C12A1.487 (6)C19—H190.9500
C12A—C15A1.485 (7)C18—C171.359 (7)
C12A—C13A1.568 (7)C18—H180.9500
C12A—H12A1.0000C17—C161.374 (7)
C15A—C16A1.363 (7)C17—H170.9500
C15A—C20A1.365 (8)C16—H160.9500
C20A—C19A1.391 (7)C13—C211.487 (7)
C20A—H20A0.9500C13—N141.500 (6)
C19A—C18A1.370 (8)C13—H131.0000
C19A—H19A0.9500N14—H14A0.9200
C18A—C17A1.399 (9)N14—H14B0.9200
C18A—H18A0.9500C21—C221.386 (8)
C17A—C16A1.411 (8)C21—C261.391 (7)
C17A—H17A0.9500C26—C251.389 (8)
C16A—H16A0.9500C26—H260.9500
C13A—C21A1.497 (8)C25—C241.396 (9)
C13A—N14A1.499 (6)C25—H250.9500
C13A—H13A1.0000C24—C231.361 (9)
N14A—H14C0.9200C24—H240.9500
N14A—H14D0.9200C23—C221.401 (9)
C21A—C22A1.377 (8)C23—H230.9500
C21A—C26A1.381 (8)C22—H220.9500
C26A—C25A1.339 (7)O1W—H1W10.8401
C26A—H26A0.9500O1W—H2W10.8402
C25A—C24A1.369 (9)O2W—H1W20.8405
C25A—H25A0.9500O2W—H2W20.8402
C24A—C23A1.362 (9)
O28A—V27A—O29A104.7 (2)C13A—N14A—H14D108.8
O28A—V27A—O7A103.99 (19)V27A—N14A—H14D108.8
O29A—V27A—O7A97.37 (19)H14C—N14A—H14D107.7
O28A—V27A—N14A96.3 (2)C22A—C21A—C26A116.9 (6)
O29A—V27A—N14A94.39 (19)C22A—C21A—C13A122.1 (6)
O7A—V27A—N14A153.03 (17)C26A—C21A—C13A120.8 (6)
O28A—V27A—N11A92.24 (19)C25A—C26A—C21A123.2 (7)
O29A—V27A—N11A161.58 (18)C25A—C26A—H26A118.4
O7A—V27A—N11A85.16 (17)C21A—C26A—H26A118.4
N14A—V27A—N11A76.36 (18)C26A—C25A—C24A118.4 (7)
O28A—V27A—O29172.23 (19)C26A—C25A—H25A120.8
O29A—V27A—O2979.23 (15)C24A—C25A—H25A120.8
O7A—V27A—O2981.88 (16)C23A—C24A—C25A122.2 (7)
N14A—V27A—O2976.60 (17)C23A—C24A—H24A118.9
N11A—V27A—O2983.10 (14)C25A—C24A—H24A118.9
O28A—V27A—V27150.30 (15)C24A—C23A—C22A117.6 (7)
O29A—V27A—V2746.21 (14)C24A—C23A—H23A121.2
O7A—V27A—V2788.38 (12)C22A—C23A—H23A121.2
N14A—V27A—V2782.40 (13)C21A—C22A—C23A121.6 (6)
N11A—V27A—V27115.95 (12)C21A—C22A—H22A119.2
O29—V27A—V2733.01 (9)C23A—C22A—H22A119.2
O28—V27—O29105.49 (19)C1—O7—V27131.7 (4)
O28—V27—O7102.1 (2)O7—C1—C2116.4 (6)
O29—V27—O796.86 (19)O7—C1—C6123.1 (6)
O28—V27—N1494.2 (2)C2—C1—C6120.4 (6)
O29—V27—N1494.74 (19)O8—C2—C3125.2 (6)
O7—V27—N14156.62 (18)O8—C2—C1116.3 (5)
O28—V27—N1195.84 (19)C3—C2—C1118.5 (6)
O29—V27—N11157.77 (18)C2—C3—C4120.5 (6)
O7—V27—N1184.50 (18)C2—C3—H3119.7
N14—V27—N1177.22 (19)C4—C3—H3119.7
O28—V27—O29A171.98 (18)C5—C4—C3120.2 (6)
O29—V27—O29A79.87 (15)C5—C4—H4119.9
O7—V27—O29A82.93 (17)C3—C4—H4119.9
N14—V27—O29A79.22 (17)C6—C5—C4120.6 (6)
N11—V27—O29A78.29 (14)C6—C5—H5119.7
O28—V27—V27A151.77 (14)C4—C5—H5119.7
O29—V27—V27A46.71 (14)C5—C6—C1119.7 (6)
O7—V27—V27A88.33 (12)C5—C6—C10118.0 (6)
N14—V27—V27A84.95 (13)C1—C6—C10121.8 (5)
N11—V27—V27A111.38 (12)C2—O8—C9116.3 (5)
O29A—V27—V27A33.16 (9)O8—C9—H9A109.5
V27A—O29A—V27100.63 (19)O8—C9—H9B109.5
V27—O29—V27A100.27 (19)H9A—C9—H9B109.5
C1A—O7A—V27A133.3 (4)O8—C9—H9C109.5
O7A—C1A—C6A125.3 (6)H9A—C9—H9C109.5
O7A—C1A—C2A117.9 (6)H9B—C9—H9C109.5
C6A—C1A—C2A116.7 (6)N11—C10—C6126.9 (5)
O8A—C2A—C3A125.0 (6)N11—C10—H10116.5
O8A—C2A—C1A114.4 (5)C6—C10—H10116.5
C3A—C2A—C1A120.7 (6)C10—N11—C12121.4 (5)
C4A—C3A—C2A120.2 (6)C10—N11—V27124.0 (4)
C4A—C3A—H3A119.9C12—N11—V27114.5 (3)
C2A—C3A—H3A119.9N11—C12—C15114.8 (5)
C5A—C4A—C3A119.5 (6)N11—C12—C13109.1 (4)
C5A—C4A—H4A120.2C15—C12—C13111.2 (5)
C3A—C4A—H4A120.2N11—C12—H12107.1
C4A—C5A—C6A121.7 (6)C15—C12—H12107.1
C4A—C5A—H5A119.1C13—C12—H12107.1
C6A—C5A—H5A119.1C16—C15—C20117.0 (5)
C5A—C6A—C1A121.0 (6)C16—C15—C12122.7 (5)
C5A—C6A—C10A119.0 (5)C20—C15—C12120.3 (5)
C1A—C6A—C10A120.0 (5)C19—C20—C15120.9 (6)
C2A—O8A—C9A115.5 (5)C19—C20—H20119.5
O8A—C9A—H9D109.5C15—C20—H20119.5
O8A—C9A—H9E109.5C18—C19—C20119.0 (6)
H9D—C9A—H9E109.5C18—C19—H19120.5
O8A—C9A—H9F109.5C20—C19—H19120.5
H9D—C9A—H9F109.5C17—C18—C19121.4 (6)
H9E—C9A—H9F109.5C17—C18—H18119.3
N11A—C10A—C6A127.3 (6)C19—C18—H18119.3
N11A—C10A—H10A116.3C18—C17—C16118.0 (6)
C6A—C10A—H10A116.3C18—C17—H17121.0
C10A—N11A—C12A118.8 (5)C16—C17—H17121.0
C10A—N11A—V27A124.9 (4)C15—C16—C17123.6 (6)
C12A—N11A—V27A115.3 (3)C15—C16—H16118.2
C15A—C12A—N11A116.9 (5)C17—C16—H16118.2
C15A—C12A—C13A113.4 (4)C21—C13—N14115.7 (5)
N11A—C12A—C13A105.0 (4)C21—C13—C12110.2 (5)
C15A—C12A—H12A107.0N14—C13—C12107.9 (4)
N11A—C12A—H12A107.0C21—C13—H13107.6
C13A—C12A—H12A107.0N14—C13—H13107.6
C16A—C15A—C20A118.1 (6)C12—C13—H13107.6
C16A—C15A—C12A121.2 (6)C13—N14—V27115.4 (3)
C20A—C15A—C12A120.6 (5)C13—N14—H14A108.4
C15A—C20A—C19A121.3 (6)V27—N14—H14A108.4
C15A—C20A—H20A119.4C13—N14—H14B108.4
C19A—C20A—H20A119.4V27—N14—H14B108.4
C18A—C19A—C20A120.0 (7)H14A—N14—H14B107.5
C18A—C19A—H19A120.0C22—C21—C26118.3 (6)
C20A—C19A—H19A120.0C22—C21—C13121.4 (6)
C19A—C18A—C17A120.7 (7)C26—C21—C13120.3 (6)
C19A—C18A—H18A119.6C25—C26—C21122.4 (6)
C17A—C18A—H18A119.6C25—C26—H26118.8
C18A—C17A—C16A116.5 (7)C21—C26—H26118.8
C18A—C17A—H17A121.7C26—C25—C24116.2 (6)
C16A—C17A—H17A121.7C26—C25—H25121.9
C15A—C16A—C17A123.3 (7)C24—C25—H25121.9
C15A—C16A—H16A118.4C23—C24—C25124.2 (7)
C17A—C16A—H16A118.4C23—C24—H24117.9
C21A—C13A—N14A113.8 (5)C25—C24—H24117.9
C21A—C13A—C12A113.6 (4)C24—C23—C22117.5 (7)
N14A—C13A—C12A105.3 (4)C24—C23—H23121.3
C21A—C13A—H13A108.0C22—C23—H23121.3
N14A—C13A—H13A108.0C21—C22—C23121.4 (6)
C12A—C13A—H13A108.0C21—C22—H22119.3
C13A—N14A—V27A113.9 (3)C23—C22—H22119.3
C13A—N14A—H14C108.8H1W1—O1W—H2W1112.2
V27A—N14A—H14C108.8H1W2—O2W—H2W2112.9
O7A—C1A—C2A—O8A2.6 (8)C13A—C21A—C22A—C23A179.0 (5)
C6A—C1A—C2A—O8A174.9 (5)C24A—C23A—C22A—C21A3.8 (9)
O7A—C1A—C2A—C3A176.6 (5)O7—C1—C2—O80.5 (8)
C6A—C1A—C2A—C3A5.9 (9)C6—C1—C2—O8176.5 (5)
O8A—C2A—C3A—C4A177.2 (6)O7—C1—C2—C3178.9 (5)
C1A—C2A—C3A—C4A3.7 (9)C6—C1—C2—C31.9 (9)
C2A—C3A—C4A—C5A0.3 (10)O8—C2—C3—C4177.8 (6)
C3A—C4A—C5A—C6A2.0 (10)C1—C2—C3—C40.4 (9)
C4A—C5A—C6A—C1A0.5 (9)C2—C3—C4—C50.8 (10)
C4A—C5A—C6A—C10A178.3 (6)C3—C4—C5—C60.5 (11)
O7A—C1A—C6A—C5A178.4 (6)C4—C5—C6—C10.9 (10)
C2A—C1A—C6A—C5A4.4 (8)C4—C5—C6—C10170.8 (6)
O7A—C1A—C6A—C10A2.8 (9)O7—C1—C6—C5179.0 (6)
C2A—C1A—C6A—C10A174.5 (5)C2—C1—C6—C52.2 (9)
C3A—C2A—O8A—C9A2.8 (8)O7—C1—C6—C107.5 (9)
C1A—C2A—O8A—C9A178.1 (5)C2—C1—C6—C10169.3 (6)
C5A—C6A—C10A—N11A177.6 (5)C3—C2—O8—C94.6 (8)
C1A—C6A—C10A—N11A3.5 (9)C1—C2—O8—C9173.6 (5)
C6A—C10A—N11A—C12A179.0 (5)C5—C6—C10—N11177.3 (6)
C6A—C10A—N11A—V27A10.7 (8)C1—C6—C10—N1111.1 (10)
C10A—N11A—C12A—C15A24.9 (7)C6—C10—N11—C12169.2 (5)
C10A—N11A—C12A—C13A151.6 (5)C6—C10—N11—V279.4 (8)
N11A—C12A—C15A—C16A114.2 (7)C10—N11—C12—C1523.2 (7)
C13A—C12A—C15A—C16A123.4 (6)C10—N11—C12—C13148.8 (5)
N11A—C12A—C15A—C20A63.5 (7)N11—C12—C15—C1671.8 (8)
C13A—C12A—C15A—C20A59.0 (8)C13—C12—C15—C1652.7 (8)
C16A—C15A—C20A—C19A2.2 (9)N11—C12—C15—C20108.6 (6)
C12A—C15A—C20A—C19A180.0 (6)C13—C12—C15—C20126.8 (6)
C15A—C20A—C19A—C18A0.7 (10)C16—C15—C20—C191.7 (10)
C20A—C19A—C18A—C17A3.1 (11)C12—C15—C20—C19177.9 (6)
C19A—C18A—C17A—C16A2.6 (11)C15—C20—C19—C180.1 (10)
C20A—C15A—C16A—C17A2.8 (10)C20—C19—C18—C171.4 (11)
C12A—C15A—C16A—C17A179.5 (6)C19—C18—C17—C161.1 (11)
C18A—C17A—C16A—C15A0.4 (11)C20—C15—C16—C172.0 (11)
C15A—C12A—C13A—C21A54.4 (7)C12—C15—C16—C17177.6 (6)
N11A—C12A—C13A—C21A176.8 (5)C18—C17—C16—C150.6 (11)
C15A—C12A—C13A—N14A179.5 (5)N11—C12—C13—C21170.4 (4)
N11A—C12A—C13A—N14A51.7 (6)C15—C12—C13—C2161.9 (6)
C21A—C13A—N14A—V27A169.5 (4)N11—C12—C13—N1443.1 (5)
C12A—C13A—N14A—V27A44.5 (5)C15—C12—C13—N14170.8 (4)
O28A—V27A—N14A—C13A109.7 (4)C21—C13—N14—V27160.3 (4)
O29A—V27A—N14A—C13A144.9 (4)C12—C13—N14—V2736.4 (5)
O7A—V27A—N14A—C13A29.1 (6)N14—C13—C21—C22119.4 (6)
N11A—V27A—N14A—C13A18.9 (4)C12—C13—C21—C22117.9 (6)
O29—V27A—N14A—C13A67.1 (4)N14—C13—C21—C2662.0 (8)
N14A—C13A—C21A—C22A60.2 (7)C12—C13—C21—C2660.7 (7)
C12A—C13A—C21A—C22A60.3 (8)C22—C21—C26—C250.9 (9)
N14A—C13A—C21A—C26A124.8 (6)C13—C21—C26—C25177.7 (6)
C12A—C13A—C21A—C26A114.7 (6)C21—C26—C25—C241.6 (9)
C22A—C21A—C26A—C25A2.3 (10)C26—C25—C24—C233.2 (10)
C13A—C21A—C26A—C25A177.5 (6)C25—C24—C23—C222.1 (12)
C21A—C26A—C25A—C24A0.8 (11)C26—C21—C22—C232.1 (10)
C26A—C25A—C24A—C23A0.7 (11)C13—C21—C22—C23176.5 (6)
C25A—C24A—C23A—C22A2.2 (10)C24—C23—C22—C210.7 (11)
C26A—C21A—C22A—C23A3.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O7A0.922.202.946 (6)138
N14A—H14D···O70.922.022.855 (6)151
O1W—H1W1···O29A0.842.142.795 (6)134
O2W—H1W2···O290.842.042.834 (7)158
C3—H3···O1Wi0.952.523.431 (8)160
C3A—H3A···O2Wii0.952.523.424 (9)159
C10A—H10A···O28iii0.952.483.075 (7)120
C13A—H13A···O291.002.533.057 (7)113
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[V2(C22H21N2O2)2O4]·2H2O
Mr892.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.328 (4), 16.950 (7), 25.49 (1)
V3)4030 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.44
Crystal size (mm)0.14 × 0.12 × 0.09
Data collection
DiffractometerOxford Xcalibur PX κ-geometry
diffractometer with CCD area-detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.627, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
27320, 7083, 3677
Rint0.066
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.069, 1.01
No. of reflections7083
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.39
Absolute structureFlack (1983), 2905 Friedel pairs
Absolute structure parameter0.007 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
V27A—O7A1.908 (4)V27—O71.904 (4)
V27A—O28A1.607 (4)V27—O281.610 (4)
V27A—O29A1.703 (4)V27—O291.694 (3)
V27A—O292.263 (4)V27—O29A2.247 (4)
V27A—N11A2.163 (5)V27—N112.179 (5)
V27A—N14A2.147 (5)V27—N142.135 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O7A0.922.202.946 (6)138
N14A—H14D···O70.922.022.855 (6)151
O1W—H1W1···O29A0.842.142.795 (6)134
O2W—H1W2···O290.842.042.834 (7)158
C3—H3···O1Wi0.952.523.431 (8)160
C3A—H3A···O2Wii0.952.523.424 (9)159
C10A—H10A···O28iii0.952.483.075 (7)120
C13A—H13A···O291.002.533.057 (7)113
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z.
 

Acknowledgements

This scientific work has been supported from funds for science in years 2007–2009 as a research project (Nos. N204 0355 33 and DS/8210–4-0086–8).

References

First citationButler, A. & Carter-Franklin, J. N. (2004). Nat. Prod. Rep. 21, 180–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCasny, M. & Rehder, D. (2001). Chem. Commun. pp. 921–922.  Google Scholar
First citationColpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669–4675.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGruning, C. & Rehder, D. (2000). J. Inorg. Biochem. 80, 185–189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKimblin, C., Bu, X. & Butler, A. (2002). Inorg. Chem. 41, 161–163.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.  Web of Science CSD CrossRef CAS Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationRobinson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M. & Postgate, J. R. (1986). Nature (London), 322, 388–390.  Google Scholar
First citationRomanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601–1609.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoot, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3855–3861.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVilter, H. (1984). Phytochemistry, 23, 1387–1390.  CrossRef CAS Web of Science Google Scholar
First citationWever, R. & Hemrika, H. (1997). In Vanadium in the Environment, Part 1, Chemistry and Biochemistry, edited by J. O. Nriagu, p. 309. New York: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m886-m887
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds