organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Penta­none 2,4-di­nitro­phenyl­hydrazone

aDepartment of Chemical Engineering, West Branch, Zhejiang University of Technology, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 28 May 2008; accepted 3 June 2008; online 7 June 2008)

Crystals of the title compound, C11H14N4O4, were obtained from a condensation reaction of 2,4-dinitro­phenyl­hydrazine and 3-penta­none. In the crystal structure, the mol­ecule, except one methyl group, displays a nearly planar structure. The imino group links to the adjacent nitro group via intra­molecular hydrogen bonding. The partially overlapped arrangement and face-to-face separation of 3.410 (9) Å between parallel benzene rings indicate the existence of ππ stacking between adjacent mol­ecules. The crystal structure also contains weak inter­molecular C—H⋯O hydrogen bonding.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]); Shan et al. (2006[Shan, S., Fan, Z. & Xu, D.-J. (2006). Acta Cryst. E62, o1123-o1125.]). For related structures, see: Shan et al. (2008a[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1153.],b[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1156.]); Cotton & Wilkinson (1972[Cotton, F. A. & Wilkinson, D. (1972). Advanced Inorganic Chemistry p. 120, New York: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N4O4

  • Mr = 266.26

  • Monoclinic, P 21 /c

  • a = 12.5298 (15) Å

  • b = 14.089 (2) Å

  • c = 7.3983 (8) Å

  • β = 93.235 (12)°

  • V = 1303.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.31 × 0.29 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 10943 measured reflections

  • 2543 independent reflections

  • 1130 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.136

  • S = 1.01

  • 2543 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.87 (2) 1.91 (2) 2.606 (3) 136 (2)
C5—H5⋯O1i 0.93 2.58 3.399 (3) 147
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As some phenylhydrazone derivatives have shown to be potentially DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives have been synthesized in our laboratory (Shan et al., 2003; Shan et al., 2006). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The molecule, except the C11-methyl group, displays a nearly co-planar structure, the angle between the C11—C10 bond and C1/N3/N4/C7/C8/C9 mean plane being 61.4 (2)°. The N4—C7 bond distance is significantly shorter than N3—N4 and N3—C1 bond distances (Table 1), and indicates the typical CN double bond. The imino group links with adjacent nitro group via intra-molecular hydrogen bonding (Fig. 1 and Table 2), which agrees with that found in related structures, e.g. furyl methyl ketone 2,4-dinitrophenylhydrazone (Shan et al., 2008a) and 2-thiazolyl methyl ketone 2,4-dinitrophenylhydrazone (Shan et al., 2008b).

A partially overlapped arrangement between parallel benzene rings of the adjacent molecules is illustrated in Fig. 2. The face-to-face separation of 3.410 (9) Å between C1-benzene and C1i-benzene rings [symmetry code: (i) 1 - x,1 - y,-z] is significantly shorter than van der Waals thickness of the aromatic ring (3.70 Å, Cotton & Wilkinson, 1972) and indicates the existence of π-π stacking in the crystal structure. The crystal structure also contains intermolecular weak C—H···O hydrogen bonding (Table 2).

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003); Shan et al. (2006). For related structures, see: Shan et al. (2008a,b); Cotton & Wilkinson (1972).

Experimental top

2,4-Dinitrophenylhydrazine (0.4 g, 2 mmol) was dissolved in ethanol (10 ml), and H2SO4 solution (98%, 0.5 ml) was slowly added to the ethanol solution with stirring. The solution was heated at about 333 K for several min until the solution cleared. 3-Pentanone (0.17 g, 2 mmol) was then added to the above solution with continuous stirring. The mixture was refluxed for 30 min. When the solution had cooled to room temperature red powder crystals appeared. The powder crystals were separated and washed with water three times. Recrystallization from absolute ethanol solution yielded well shaped single crystals of the title compound.

Refinement top

Imino H atom was located in a difference Fourier map and refined isotropically. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms, dashed line indicates hydrogen bonding.
[Figure 2] Fig. 2. A diagram showing the partially overlapped arrangement of benzene rings [symmetry code: (i) 1 - x,1 - y,-z].
3-Pentanone 2,4-dinitrophenylhydrazone top
Crystal data top
C11H14N4O4F(000) = 560
Mr = 266.26Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2556 reflections
a = 12.5298 (15) Åθ = 3.5–25.0°
b = 14.089 (2) ŵ = 0.11 mm1
c = 7.3983 (8) ÅT = 294 K
β = 93.235 (12)°Prism, red
V = 1303.9 (3) Å30.31 × 0.29 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1130 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1h = 1515
ω scansk = 1717
10943 measured reflectionsl = 98
2543 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.0303P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2543 reflectionsΔρmax = 0.15 e Å3
179 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C11H14N4O4V = 1303.9 (3) Å3
Mr = 266.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5298 (15) ŵ = 0.11 mm1
b = 14.089 (2) ÅT = 294 K
c = 7.3983 (8) Å0.31 × 0.29 × 0.22 mm
β = 93.235 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1130 reflections with I > 2σ(I)
10943 measured reflectionsRint = 0.037
2543 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
2543 reflectionsΔρmin = 0.12 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49005 (19)0.29067 (16)0.0607 (3)0.0817 (6)
N20.79233 (17)0.4911 (2)0.2228 (3)0.0928 (7)
N30.35067 (15)0.43228 (17)0.2123 (3)0.0742 (6)
N40.28589 (14)0.50533 (14)0.2635 (2)0.0758 (6)
O10.39384 (16)0.27125 (13)0.0591 (3)0.1056 (6)
O20.55348 (16)0.23773 (14)0.0069 (3)0.1145 (7)
O30.84951 (15)0.42733 (18)0.1731 (3)0.1230 (8)
O40.82618 (14)0.56837 (18)0.2750 (3)0.1248 (8)
C10.45801 (16)0.44522 (16)0.2116 (2)0.0610 (6)
C20.52770 (16)0.37825 (16)0.1427 (2)0.0636 (6)
C30.63704 (17)0.39319 (17)0.1474 (3)0.0707 (6)
H30.68230.34780.10190.085*
C40.67726 (16)0.47555 (18)0.2196 (3)0.0687 (6)
C50.61123 (17)0.54410 (17)0.2870 (3)0.0696 (6)
H50.64020.60000.33520.083*
C60.50387 (17)0.52968 (16)0.2827 (3)0.0665 (6)
H60.45990.57630.32750.080*
C70.18529 (19)0.4892 (2)0.2520 (3)0.0854 (7)
C80.11384 (19)0.5688 (2)0.3035 (4)0.1065 (9)
H8A0.06150.57960.20400.128*
H8B0.07520.54850.40680.128*
C90.1670 (2)0.6608 (2)0.3497 (4)0.1228 (11)
H9A0.22040.65130.44620.184*
H9B0.11480.70540.38740.184*
H9C0.20010.68510.24530.184*
C100.1317 (2)0.3981 (2)0.1833 (4)0.1104 (10)
H10A0.05930.41230.13800.132*
H10B0.17030.37330.08360.132*
C110.1285 (3)0.3250 (3)0.3265 (4)0.1350 (11)
H11A0.20020.30820.36700.202*
H11B0.09200.26970.27880.202*
H11C0.09140.34960.42640.202*
H3N0.3286 (18)0.3785 (18)0.167 (3)0.092 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0977 (15)0.0693 (15)0.0780 (13)0.0007 (13)0.0042 (12)0.0036 (11)
N20.0699 (15)0.116 (2)0.0930 (15)0.0022 (14)0.0047 (11)0.0069 (14)
N30.0693 (13)0.0696 (15)0.0838 (13)0.0045 (12)0.0044 (10)0.0017 (11)
N40.0664 (12)0.0779 (15)0.0833 (12)0.0052 (10)0.0063 (9)0.0082 (10)
O10.1008 (13)0.0832 (14)0.1323 (15)0.0184 (11)0.0006 (11)0.0159 (11)
O20.1273 (15)0.0911 (15)0.1265 (16)0.0073 (12)0.0198 (12)0.0373 (12)
O30.0742 (11)0.143 (2)0.1533 (19)0.0159 (12)0.0156 (11)0.0054 (14)
O40.0865 (13)0.138 (2)0.1503 (18)0.0311 (13)0.0091 (11)0.0206 (15)
C10.0659 (13)0.0637 (16)0.0532 (11)0.0012 (11)0.0020 (10)0.0093 (10)
C20.0733 (14)0.0604 (15)0.0570 (12)0.0004 (12)0.0022 (10)0.0053 (11)
C30.0761 (15)0.0749 (17)0.0613 (13)0.0131 (12)0.0072 (11)0.0077 (11)
C40.0618 (13)0.0807 (17)0.0637 (13)0.0006 (13)0.0040 (10)0.0075 (12)
C50.0746 (15)0.0700 (16)0.0637 (12)0.0068 (12)0.0010 (11)0.0018 (11)
C60.0700 (14)0.0647 (15)0.0647 (13)0.0042 (11)0.0043 (10)0.0014 (11)
C70.0660 (15)0.099 (2)0.0907 (17)0.0043 (14)0.0038 (12)0.0060 (14)
C80.0719 (16)0.124 (3)0.124 (2)0.0170 (17)0.0121 (15)0.0007 (19)
C90.104 (2)0.103 (3)0.163 (3)0.0176 (18)0.0196 (19)0.003 (2)
C100.0770 (17)0.136 (3)0.118 (2)0.0064 (17)0.0036 (16)0.002 (2)
C110.147 (3)0.123 (3)0.135 (3)0.027 (2)0.015 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—O21.218 (2)C5—H50.9300
N1—O11.235 (2)C6—H60.9300
N1—C21.442 (3)C7—C81.497 (4)
N2—O31.219 (3)C7—C101.523 (4)
N2—O41.222 (3)C8—C91.489 (4)
N2—C41.457 (3)C8—H8A0.9700
N3—C11.358 (3)C8—H8B0.9700
N3—N41.377 (3)C9—H9A0.9600
N3—H3N0.87 (2)C9—H9B0.9600
N4—C71.279 (3)C9—H9C0.9600
C1—C21.401 (3)C10—C111.479 (4)
C1—C61.410 (3)C10—H10A0.9700
C2—C31.385 (3)C10—H10B0.9700
C3—C41.362 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.383 (3)C11—H11C0.9600
C5—C61.359 (3)
O2—N1—O1121.3 (2)N4—C7—C8116.9 (2)
O2—N1—C2119.4 (2)N4—C7—C10125.9 (2)
O1—N1—C2119.3 (2)C8—C7—C10117.2 (2)
O3—N2—O4123.5 (2)C9—C8—C7116.4 (2)
O3—N2—C4118.8 (3)C9—C8—H8A108.2
O4—N2—C4117.7 (3)C7—C8—H8A108.2
C1—N3—N4120.0 (2)C9—C8—H8B108.2
C1—N3—H3N114.2 (16)C7—C8—H8B108.2
N4—N3—H3N125.4 (16)H8A—C8—H8B107.4
C7—N4—N3116.3 (2)C8—C9—H9A109.5
N3—C1—C2123.3 (2)C8—C9—H9B109.5
N3—C1—C6119.7 (2)H9A—C9—H9B109.5
C2—C1—C6117.06 (19)C8—C9—H9C109.5
C3—C2—C1121.6 (2)H9A—C9—H9C109.5
C3—C2—N1116.1 (2)H9B—C9—H9C109.5
C1—C2—N1122.2 (2)C11—C10—C7112.2 (2)
C4—C3—C2118.9 (2)C11—C10—H10A109.2
C4—C3—H3120.6C7—C10—H10A109.2
C2—C3—H3120.6C11—C10—H10B109.2
C3—C4—C5121.4 (2)C7—C10—H10B109.2
C3—C4—N2118.6 (2)H10A—C10—H10B107.9
C5—C4—N2120.0 (2)C10—C11—H11A109.5
C6—C5—C4119.9 (2)C10—C11—H11B109.5
C6—C5—H5120.0H11A—C11—H11B109.5
C4—C5—H5120.0C10—C11—H11C109.5
C5—C6—C1121.1 (2)H11A—C11—H11C109.5
C5—C6—H6119.4H11B—C11—H11C109.5
C1—C6—H6119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.87 (2)1.91 (2)2.606 (3)136 (2)
C5—H5···O1i0.932.583.399 (3)147
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N4O4
Mr266.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.5298 (15), 14.089 (2), 7.3983 (8)
β (°) 93.235 (12)
V3)1303.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.29 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10943, 2543, 1130
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 1.01
No. of reflections2543
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N3—C11.358 (3)N4—C71.279 (3)
N3—N41.377 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.87 (2)1.91 (2)2.606 (3)136 (2)
C5—H5···O1i0.932.583.399 (3)147
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Wilkinson, D. (1972). Advanced Inorganic Chemistry p. 120, New York: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Fan, Z. & Xu, D.-J. (2006). Acta Cryst. E62, o1123–o1125.  CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds