metal-organic compounds
Di-μ-oxido-bis({(R)-(–)-2-[1-(2-aminopropylimino)ethyl]-1-naphtholato-κ3N,N′,O}oxidovanadium(V))
aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland, and bNicholas Copernicus University, Faculty of Chemistry, Gagarina 7, 87-100 Toruń, Poland
*Correspondence e-mail: greg@chem.univ.gda.pl
In the title dinuclear compound, [V2(C15H17N2O)2O4], each VV atom is six-coordinated by one oxide group, and by two N and one O atom of the tridentate Schiff base ligand, and bridged by two additional oxide O atoms, resulting in a centrosymmetric dimer. The metal centre has a distorted octahedral coordination with the monoanionic Schiff base ligand occupying one equatorial and two axial coordination positions. The separation between V atoms is 3.214 (3) Å. In the there are N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds, and π–π interactions.
Related literature
For general background, see: Sigel & Sigel (1995); Butler & Walker (1993); Martinez et al. (2001); Rehder (1991); Thompson & Orvig (2000); Evangelou (2002); Kwiatkowski et al. (2003, 2006, 2007); Romanowski et al. (2008); Rehder (1999); Colpas et al. (1994); Li et al. (1988); Fulwood et al. (1995). For related structures, see: Root et al. (1993); Romanowski et al. (2008); Rayati et al. (2007, 2008); Kwiatkowski et al. (2007). For the synthesis, see: Kwiatkowski et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S160053680801787X/xu2429sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801787X/xu2429Isup2.hkl
The title complex were obtained in a template/complexation reactions analogous to those described for preparation of dioxovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A sample of 10 mmol of R(-)-1,2-diaminopropane in 10 ml of absolute ethanol was added with stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (10 mmol) in 50 ml of absolute ethanol producing a yellow suspension. 1-Hydroxy-2-acetonaphthone (10 mmol) dissolved in 10 ml of absolute ethanol was slowly added. After refluxing of the resulting mixture for 10 h and its cooling to room temperature the separated solid was filtered off and washed. Crystals suitable for X-ray analysis were obtained by slow recrystallization from ethanol/DMSO solution.
All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and with N–H distances of 0.90 Å and with Uiso(H) = 1.2Ueq(C). The C2 and C17 atoms are disordered over two sites, the occupancy ratio was refined and converged to 0.54 (2):0.46 (2).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along the c axis. The N—H···O, C—H···O and C—H···π interactions are represented by dashed lines and π-π interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) 1/2 - x, -1/2 - y, -z, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) -x, -y, -z]. |
[V2(C15H17N2O)2O4] | F(000) = 1344 |
Mr = 648.49 | Dx = 1.497 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2875 reflections |
a = 25.187 (5) Å | θ = 2.8–25.0° |
b = 7.663 (2) Å | µ = 0.70 mm−1 |
c = 16.898 (3) Å | T = 298 K |
β = 118.09 (3)° | Needle, yellow |
V = 2877.3 (13) Å3 | 0.28 × 0.13 × 0.12 mm |
Z = 4 |
Oxford Diffraction Sapphire CCD diffractometer | 2474 independent reflections |
Radiation source: fine-focus sealed tube | 2086 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
θ/2θ scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006) | h = −25→29 |
Tmin = 0.828, Tmax = 0.918 | k = −9→8 |
9202 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.084 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P] where P = (Fo2 + 2Fc2)/3 |
2474 reflections | (Δ/σ)max = 0.001 |
202 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[V2(C15H17N2O)2O4] | V = 2877.3 (13) Å3 |
Mr = 648.49 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.187 (5) Å | µ = 0.70 mm−1 |
b = 7.663 (2) Å | T = 298 K |
c = 16.898 (3) Å | 0.28 × 0.13 × 0.12 mm |
β = 118.09 (3)° |
Oxford Diffraction Sapphire CCD diffractometer | 2474 independent reflections |
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006) | 2086 reflections with I > 2σ(I) |
Tmin = 0.828, Tmax = 0.918 | Rint = 0.078 |
9202 measured reflections |
R[F2 > 2σ(F2)] = 0.084 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P] where P = (Fo2 + 2Fc2)/3 |
2474 reflections | Δρmax = 0.66 e Å−3 |
202 parameters | Δρmin = −0.41 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
V1 | 0.22582 (5) | 0.07588 (12) | 0.02520 (6) | 0.0261 (3) | |
O1 | 0.1947 (2) | −0.1142 (5) | 0.0042 (3) | 0.0419 (11) | |
N1 | 0.3137 (2) | −0.0142 (6) | 0.0585 (3) | 0.0323 (12) | |
H1A | 0.3102 | −0.1053 | 0.0226 | 0.039* | |
H1B | 0.3330 | 0.0713 | 0.0457 | 0.039* | |
O2 | 0.28370 (18) | 0.3407 (5) | 0.0711 (2) | 0.0308 (9) | |
C3 | 0.3353 (3) | 0.0368 (9) | 0.2130 (4) | 0.0413 (16) | |
H3A | 0.3546 | 0.1468 | 0.2393 | 0.050* | |
H3B | 0.3476 | −0.0479 | 0.2612 | 0.050* | |
N4 | 0.2701 (2) | 0.0595 (6) | 0.1714 (3) | 0.0266 (10) | |
C5 | 0.2442 (3) | 0.0737 (7) | 0.2207 (4) | 0.0307 (13) | |
C6 | 0.1780 (3) | 0.0906 (7) | 0.1799 (4) | 0.0301 (13) | |
C7 | 0.1481 (3) | 0.0356 (7) | 0.2291 (4) | 0.0361 (15) | |
H7A | 0.1702 | −0.0160 | 0.2850 | 0.043* | |
C8 | 0.0877 (3) | 0.0571 (9) | 0.1958 (4) | 0.0413 (16) | |
H8A | 0.0691 | 0.0174 | 0.2287 | 0.050* | |
C9 | 0.0529 (3) | 0.1389 (8) | 0.1121 (4) | 0.0384 (15) | |
C10 | −0.0103 (3) | 0.1660 (9) | 0.0753 (5) | 0.0475 (18) | |
H10A | −0.0300 | 0.1282 | 0.1069 | 0.057* | |
C11 | −0.0422 (3) | 0.2461 (10) | −0.0052 (6) | 0.056 (2) | |
H11A | −0.0834 | 0.2628 | −0.0275 | 0.068* | |
C12 | −0.0147 (3) | 0.3033 (10) | −0.0545 (5) | 0.056 (2) | |
H12A | −0.0370 | 0.3601 | −0.1089 | 0.067* | |
C13 | 0.0463 (3) | 0.2751 (8) | −0.0219 (4) | 0.0415 (16) | |
H13A | 0.0646 | 0.3107 | −0.0558 | 0.050* | |
C14 | 0.0811 (3) | 0.1941 (7) | 0.0611 (4) | 0.0315 (13) | |
C15 | 0.1446 (2) | 0.1620 (7) | 0.0945 (4) | 0.0264 (12) | |
O16 | 0.16869 (17) | 0.2114 (5) | 0.0436 (2) | 0.0288 (9) | |
C18 | 0.2780 (3) | 0.0802 (9) | 0.3211 (4) | 0.0414 (15) | |
H18A | 0.3139 | 0.1484 | 0.3397 | 0.062* | |
H18B | 0.2887 | −0.0361 | 0.3444 | 0.062* | |
H18C | 0.2531 | 0.1324 | 0.3436 | 0.062* | |
C2A | 0.3524 (5) | −0.070 (2) | 0.1537 (8) | 0.042 (4) | 0.54 (2) |
H2A | 0.3435 | −0.1922 | 0.1590 | 0.051* | 0.54 (2) |
C17A | 0.419 (2) | −0.055 (6) | 0.180 (3) | 0.067 (15) | 0.54 (2) |
H17A | 0.4422 | −0.1162 | 0.2359 | 0.101* | 0.54 (2) |
H17B | 0.4306 | 0.0653 | 0.1877 | 0.101* | 0.54 (2) |
H17C | 0.4262 | −0.1063 | 0.1344 | 0.101* | 0.54 (2) |
C2B | 0.3583 (6) | 0.041 (3) | 0.1485 (9) | 0.029 (4)* | 0.46 (2) |
H2B | 0.3679 | 0.1637 | 0.1437 | 0.034* | 0.46 (2) |
C17B | 0.418 (3) | −0.071 (6) | 0.184 (4) | 0.046 (11)* | 0.46 (2) |
H17D | 0.4385 | −0.0718 | 0.2485 | 0.069* | 0.46 (2) |
H17E | 0.4442 | −0.0207 | 0.1630 | 0.069* | 0.46 (2) |
H17F | 0.4084 | −0.1885 | 0.1622 | 0.069* | 0.46 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.0346 (5) | 0.0226 (5) | 0.0201 (5) | 0.0047 (5) | 0.0121 (4) | 0.0020 (4) |
O1 | 0.052 (3) | 0.026 (2) | 0.049 (3) | 0.000 (2) | 0.024 (2) | 0.0016 (19) |
N1 | 0.044 (3) | 0.024 (3) | 0.034 (3) | 0.004 (2) | 0.022 (3) | 0.002 (2) |
O2 | 0.042 (2) | 0.028 (2) | 0.023 (2) | 0.0073 (18) | 0.0157 (19) | 0.0015 (17) |
C3 | 0.035 (4) | 0.052 (4) | 0.029 (3) | 0.014 (3) | 0.008 (3) | 0.009 (3) |
N4 | 0.032 (3) | 0.025 (3) | 0.023 (2) | 0.007 (2) | 0.013 (2) | 0.010 (2) |
C5 | 0.045 (3) | 0.022 (3) | 0.025 (3) | −0.003 (3) | 0.017 (3) | 0.003 (3) |
C6 | 0.043 (3) | 0.021 (3) | 0.032 (3) | −0.001 (3) | 0.022 (3) | 0.002 (3) |
C7 | 0.053 (4) | 0.026 (3) | 0.036 (3) | −0.001 (3) | 0.027 (3) | 0.001 (3) |
C8 | 0.054 (4) | 0.040 (4) | 0.042 (4) | −0.008 (3) | 0.033 (3) | −0.001 (3) |
C9 | 0.039 (4) | 0.032 (3) | 0.047 (4) | −0.008 (3) | 0.023 (3) | −0.008 (3) |
C10 | 0.037 (4) | 0.043 (4) | 0.069 (5) | −0.003 (3) | 0.030 (4) | −0.001 (4) |
C11 | 0.028 (4) | 0.052 (5) | 0.074 (6) | 0.001 (3) | 0.012 (4) | −0.006 (4) |
C12 | 0.042 (4) | 0.047 (5) | 0.063 (5) | 0.008 (4) | 0.012 (4) | 0.014 (4) |
C13 | 0.041 (4) | 0.034 (3) | 0.041 (4) | 0.001 (3) | 0.012 (3) | 0.004 (3) |
C14 | 0.035 (3) | 0.025 (3) | 0.035 (3) | −0.005 (3) | 0.017 (3) | −0.005 (3) |
C15 | 0.033 (3) | 0.019 (3) | 0.026 (3) | −0.003 (2) | 0.013 (3) | −0.003 (2) |
O16 | 0.036 (2) | 0.028 (2) | 0.025 (2) | 0.0029 (18) | 0.0170 (18) | 0.0041 (17) |
C18 | 0.052 (4) | 0.048 (4) | 0.024 (3) | 0.006 (3) | 0.017 (3) | 0.000 (3) |
C2A | 0.036 (7) | 0.042 (10) | 0.040 (7) | 0.016 (6) | 0.011 (6) | 0.011 (6) |
C17A | 0.041 (13) | 0.11 (3) | 0.051 (13) | 0.040 (15) | 0.020 (9) | 0.037 (15) |
V1—O1 | 1.612 (4) | C9—C14 | 1.413 (8) |
V1—O2i | 1.658 (4) | C9—C10 | 1.425 (9) |
V1—O16 | 1.915 (4) | C10—C11 | 1.358 (11) |
V1—N1 | 2.127 (5) | C10—H10A | 0.9300 |
V1—N4 | 2.183 (4) | C11—C12 | 1.382 (10) |
V1—O2 | 2.404 (4) | C11—H11A | 0.9300 |
N1—C2B | 1.466 (14) | C12—C13 | 1.383 (9) |
N1—C2A | 1.498 (13) | C12—H12A | 0.9300 |
N1—H1A | 0.9000 | C13—C14 | 1.401 (9) |
N1—H1B | 0.9000 | C13—H13A | 0.9300 |
O2—V1i | 1.658 (4) | C14—C15 | 1.446 (8) |
C3—C2B | 1.456 (14) | C15—O16 | 1.320 (6) |
C3—N4 | 1.460 (7) | C18—H18A | 0.9600 |
C3—C2A | 1.502 (14) | C18—H18B | 0.9600 |
C3—H3A | 0.9700 | C18—H18C | 0.9600 |
C3—H3B | 0.9700 | C2A—C17A | 1.52 (6) |
N4—C5 | 1.282 (7) | C2A—H2A | 0.9800 |
C5—C6 | 1.479 (8) | C17A—H17A | 0.9600 |
C5—C18 | 1.499 (8) | C17A—H17B | 0.9600 |
C6—C15 | 1.395 (8) | C17A—H17C | 0.9600 |
C6—C7 | 1.424 (8) | C2B—C17B | 1.59 (6) |
C7—C8 | 1.360 (9) | C2B—H2B | 0.9800 |
C7—H7A | 0.9300 | C17B—H17D | 0.9600 |
C8—C9 | 1.413 (9) | C17B—H17E | 0.9600 |
C8—H8A | 0.9300 | C17B—H17F | 0.9600 |
O1—V1—O2i | 107.6 (2) | C9—C8—H8A | 119.6 |
O1—V1—O16 | 101.6 (2) | C14—C9—C8 | 119.4 (6) |
O2i—V1—O16 | 100.23 (18) | C14—C9—C10 | 117.9 (6) |
O1—V1—N1 | 95.9 (2) | C8—C9—C10 | 122.7 (6) |
O2i—V1—N1 | 92.07 (19) | C11—C10—C9 | 121.1 (7) |
O16—V1—N1 | 154.36 (19) | C11—C10—H10A | 119.5 |
O1—V1—N4 | 97.7 (2) | C9—C10—H10A | 119.5 |
O2i—V1—N4 | 153.32 (19) | C10—C11—C12 | 121.2 (7) |
O16—V1—N4 | 82.56 (17) | C10—C11—H11A | 119.4 |
N1—V1—N4 | 76.61 (18) | C12—C11—H11A | 119.4 |
O1—V1—O2 | 172.50 (19) | C11—C12—C13 | 119.3 (7) |
O2i—V1—O2 | 77.09 (18) | C11—C12—H12A | 120.4 |
O16—V1—O2 | 82.98 (15) | C13—C12—H12A | 120.4 |
N1—V1—O2 | 77.93 (17) | C12—C13—C14 | 121.5 (7) |
N4—V1—O2 | 76.95 (15) | C12—C13—H13A | 119.3 |
C2B—N1—V1 | 111.9 (6) | C14—C13—H13A | 119.3 |
C2A—N1—V1 | 116.4 (5) | C13—C14—C9 | 119.0 (6) |
C2B—N1—H1A | 135.2 | C13—C14—C15 | 121.5 (6) |
C2A—N1—H1A | 108.2 | C9—C14—C15 | 119.5 (5) |
V1—N1—H1A | 108.2 | O16—C15—C6 | 123.2 (5) |
C2B—N1—H1B | 78.5 | O16—C15—C14 | 117.4 (5) |
C2A—N1—H1B | 108.2 | C6—C15—C14 | 119.2 (5) |
V1—N1—H1B | 108.2 | C15—O16—V1 | 124.1 (3) |
H1A—N1—H1B | 107.3 | C5—C18—H18A | 109.5 |
V1i—O2—V1 | 102.91 (18) | C5—C18—H18B | 109.5 |
C2B—C3—N4 | 112.9 (7) | H18A—C18—H18B | 109.5 |
N4—C3—C2A | 110.7 (6) | C5—C18—H18C | 109.5 |
C2B—C3—H3A | 91.7 | H18A—C18—H18C | 109.5 |
N4—C3—H3A | 109.0 | H18B—C18—H18C | 109.5 |
C2A—C3—H3A | 122.4 | N1—C2A—C3 | 108.6 (9) |
C2B—C3—H3B | 124.2 | N1—C2A—C17A | 111 (2) |
N4—C3—H3B | 109.1 | C3—C2A—C17A | 113 (2) |
C2A—C3—H3B | 96.8 | N1—C2A—H2A | 108.0 |
H3A—C3—H3B | 107.7 | C3—C2A—H2A | 108.0 |
C5—N4—C3 | 119.9 (5) | C17A—C2A—H2A | 108.0 |
C5—N4—V1 | 125.8 (4) | C3—C2B—N1 | 113.0 (10) |
C3—N4—V1 | 114.3 (3) | C3—C2B—C17B | 110 (3) |
N4—C5—C6 | 120.8 (5) | N1—C2B—C17B | 111 (2) |
N4—C5—C18 | 123.2 (5) | C3—C2B—H2B | 106.6 |
C6—C5—C18 | 116.0 (5) | N1—C2B—H2B | 106.9 |
C15—C6—C7 | 119.5 (5) | C17B—C2B—H2B | 108.7 |
C15—C6—C5 | 121.0 (5) | C2B—C17B—H17D | 109.5 |
C7—C6—C5 | 119.6 (5) | C2B—C17B—H17E | 109.5 |
C8—C7—C6 | 121.3 (6) | H17D—C17B—H17E | 109.5 |
C8—C7—H7A | 119.3 | C2B—C17B—H17F | 109.5 |
C6—C7—H7A | 119.3 | H17D—C17B—H17F | 109.5 |
C7—C8—C9 | 120.8 (6) | H17E—C17B—H17F | 109.5 |
C7—C8—H8A | 119.6 | ||
O1—V1—N1—C2B | −123.4 (9) | C8—C9—C10—C11 | 179.6 (7) |
O2i—V1—N1—C2B | 128.7 (9) | C9—C10—C11—C12 | 0.4 (11) |
O16—V1—N1—C2B | 9.6 (10) | C10—C11—C12—C13 | 1.3 (12) |
N4—V1—N1—C2B | −26.9 (9) | C11—C12—C13—C14 | −1.8 (11) |
O2—V1—N1—C2B | 52.3 (9) | C12—C13—C14—C9 | 0.6 (10) |
O1—V1—N1—C2A | −86.0 (9) | C12—C13—C14—C15 | 179.0 (6) |
O2i—V1—N1—C2A | 166.1 (9) | C8—C9—C14—C13 | 180.0 (6) |
O16—V1—N1—C2A | 47.0 (10) | C10—C9—C14—C13 | 1.1 (9) |
N4—V1—N1—C2A | 10.5 (9) | C8—C9—C14—C15 | 1.5 (9) |
O2—V1—N1—C2A | 89.8 (9) | C10—C9—C14—C15 | −177.4 (6) |
O2i—V1—O2—V1i | 0.0 | C7—C6—C15—O16 | −178.0 (5) |
O16—V1—O2—V1i | −102.2 (2) | C5—C6—C15—O16 | 3.1 (8) |
N1—V1—O2—V1i | 95.0 (2) | C7—C6—C15—C14 | 5.8 (8) |
N4—V1—O2—V1i | 173.8 (2) | C5—C6—C15—C14 | −173.2 (5) |
C2B—C3—N4—C5 | −173.8 (10) | C13—C14—C15—O16 | −0.3 (8) |
C2A—C3—N4—C5 | 149.1 (9) | C9—C14—C15—O16 | 178.1 (5) |
C2B—C3—N4—V1 | 3.9 (10) | C13—C14—C15—C6 | 176.2 (5) |
C2A—C3—N4—V1 | −33.1 (9) | C9—C14—C15—C6 | −5.4 (8) |
O1—V1—N4—C5 | −75.5 (5) | C6—C15—O16—V1 | 45.4 (7) |
O2i—V1—N4—C5 | 123.3 (5) | C14—C15—O16—V1 | −138.3 (4) |
O16—V1—N4—C5 | 25.3 (5) | O1—V1—O16—C15 | 47.0 (4) |
N1—V1—N4—C5 | −169.7 (5) | O2i—V1—O16—C15 | 157.5 (4) |
O2—V1—N4—C5 | 109.8 (5) | N1—V1—O16—C15 | −85.1 (6) |
O1—V1—N4—C3 | 106.9 (4) | N4—V1—O16—C15 | −49.4 (4) |
O2i—V1—N4—C3 | −54.3 (6) | O2—V1—O16—C15 | −127.0 (4) |
O16—V1—N4—C3 | −152.3 (4) | C2B—N1—C2A—C3 | 59.9 (13) |
N1—V1—N4—C3 | 12.7 (4) | V1—N1—C2A—C3 | −30.7 (14) |
O2—V1—N4—C3 | −67.8 (4) | C2B—N1—C2A—C17A | −65 (2) |
C3—N4—C5—C6 | −177.8 (5) | V1—N1—C2A—C17A | −155 (2) |
V1—N4—C5—C6 | 4.7 (8) | C2B—C3—C2A—N1 | −60.6 (12) |
C3—N4—C5—C18 | 4.2 (9) | N4—C3—C2A—N1 | 40.1 (13) |
V1—N4—C5—C18 | −173.3 (4) | C2B—C3—C2A—C17A | 63 (2) |
N4—C5—C6—C15 | −26.7 (8) | N4—C3—C2A—C17A | 164 (2) |
C18—C5—C6—C15 | 151.4 (6) | N4—C3—C2B—N1 | −27.1 (16) |
N4—C5—C6—C7 | 154.3 (6) | C2A—C3—C2B—N1 | 66.4 (14) |
C18—C5—C6—C7 | −27.6 (8) | N4—C3—C2B—C17B | −152.1 (19) |
C15—C6—C7—C8 | −2.4 (9) | C2A—C3—C2B—C17B | −59 (2) |
C5—C6—C7—C8 | 176.6 (6) | C2A—N1—C2B—C3 | −66.9 (14) |
C6—C7—C8—C9 | −1.6 (10) | V1—N1—C2B—C3 | 38.2 (15) |
C7—C8—C9—C14 | 2.0 (10) | C2A—N1—C2B—C17B | 58 (3) |
C7—C8—C9—C10 | −179.2 (6) | V1—N1—C2B—C17B | 163 (3) |
C14—C9—C10—C11 | −1.6 (10) |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.90 | 2.19 | 3.011 (6) | 151 |
C7—H7A···O2iii | 0.93 | 2.41 | 3.335 (7) | 173 |
C18—H18B···O16iii | 0.96 | 2.56 | 3.482 (8) | 161 |
C3—H3B···Cg1iii | 0.97 | 2.95 | 3.874 (7) | 159 |
Symmetry codes: (ii) −x+1/2, −y−1/2, −z; (iii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [V2(C15H17N2O)2O4] |
Mr | 648.49 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 25.187 (5), 7.663 (2), 16.898 (3) |
β (°) | 118.09 (3) |
V (Å3) | 2877.3 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.28 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Sapphire CCD diffractometer |
Absorption correction | Numerical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.828, 0.918 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9202, 2474, 2086 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.084, 0.153, 1.23 |
No. of reflections | 2474 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.66, −0.41 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.90 | 2.19 | 3.011 (6) | 151 |
C7—H7A···O2ii | 0.93 | 2.41 | 3.335 (7) | 173 |
C18—H18B···O16ii | 0.96 | 2.56 | 3.482 (8) | 161 |
C3—H3B···Cg1ii | 0.97 | 2.95 | 3.874 (7) | 159 |
Symmetry codes: (i) −x+1/2, −y−1/2, −z; (ii) −x+1/2, y−1/2, −z+1/2. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
Cg2 | Cg2iii | 3.518 (4) | 0.0 | 3.365 (4) | 1.025 (4) |
Symmetry code: (iii) -x, -y, -z. Notes: Cg2 represents the centre of gravity of the ring C14-C19. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the offset distance of ring I from ring J. |
Acknowledgements
This scientific work has been supported from funds for science in years 2007–2009 as a research project (N N204 0355 33 and DS/8210–4-0086–8).
References
Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937–1944. CrossRef CAS Web of Science Google Scholar
Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669–4675. CSD CrossRef CAS Web of Science Google Scholar
Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249–265. Web of Science CrossRef PubMed Google Scholar
Fulwood, R., Schmidt, H. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 1443–1444. CrossRef Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809–2814. Web of Science CSD CrossRef CAS Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018. Web of Science CSD CrossRef CAS Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568. Web of Science CSD CrossRef CAS Google Scholar
Li, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664. CSD CrossRef CAS Web of Science Google Scholar
Martinez, J. S., Carrol, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289–3294. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland. Google Scholar
Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548. Web of Science CrossRef CAS Google Scholar
Rayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530–1533. Web of Science CSD CrossRef CAS Google Scholar
Rehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148–167. CrossRef Web of Science Google Scholar
Rehder, D. (1999). Coord. Chem. Rev. 182, 297–322. Web of Science CrossRef CAS Google Scholar
Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601–1609. Web of Science CSD CrossRef CAS Google Scholar
Root, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3855–3861. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sigel, H. & Sigel, A. (1995). Vanadium and its Role in Life. In Metal Ions in Biological Systems, Vol. 31, edited by H. Sigel, A & Sigel, A. New York: Marcel Dekker. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, K. H. & Orvig, C. (2000). J. Chem. Soc. Dalton Trans. pp. 2885–2892. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Vanadium is a trace element in diverse living forms (Sigel & Sigel, 1995). It plays active roles in many biologically important reactions such as halogenation of organic substrates, activation or fixation of nitrogen through an alternative pathway (Butler & Walker, 1993; Martinez et al., 2001) and potent inhibitor of phosphate-metabolizing enzymes (Rehder, 1991). Some of the vanadium compounds stimulate glucose uptake and inhibit lipid breakdown in a manner remarkably reminiscent of insulin effects (Thompson & Orvig, 2000) or exert preventive effects against chemical carcinogenesis on animals (Evangelou, 2002). Recently, it has been established that vanadium(V) complexes with Schiff bases, which are excellent models for active sites of vanadium containing haloperoxidases, are able to catalyze the oxidation of organic sulfides to the corresponding sulfoxides (Kwiatkowski et al., 2003, 2007; Romanowski et al., 2008). A collection of such models discussed in some detail in a review (Rehder, 1999) show that they contained either N2O2 or NO4–5 set of donor atoms in the coordination sphere.
The half of the molecule, constituting the asymmetric part of the structure, is related to the other half by the center of symmetry (Fig. 1). The geometry of the coordination environment resembles two edge shared octahedrons that are significantly distorted. The V1=O1 bond length of 1.612 (4) Å is typically for the distances between vanadium and the doubly bonded oxygen atoms which are not involved in donor-acceptor interactions (Kwiatkowski et al., 2003, 2006, 2007; Romanowski et al., 2008). The O2, V1, O2i, V1i atoms are situated in edges of a parallelogram with the acute O2-V1-O2i angle of 77.09 (18)° [symmetry code: (i) -x+1/2,-y+1/2,-z]. The tridentate ligand is coordinated meridionally, its oxygen (O16) and primary amine nitrogen (N1) occupy axial positions. The V1—O1 bond is shorter than V1—O2i bond (1.658 Å) due to involvement of O2i atom in V1···V1i bridging. The O1-V1-O2i angle of 107.6 (2)° indicate significant double bond character of this bond (Colpas et al., 1994) and is close to other cis-VO2 units (Li et al., 1988). The five-membered ring comprising the propylenediamine moiety exhibits twofold disorder. A disorder of two carbon atoms in the aliphatic five-membered ring is interpreted assuming the presence of two conformations of the CH2—CH(CH3) fragment. The C2 and C17 atoms are disordered over two sites, with occupancy factors of 0.54 (2) and 0.46 (2) for C2A/C17A and C2B/C17B, respectively. The methyl group of the aliphatic five-membered ring assumes a pseudoequatorial position for both conformers. The ligand sites are diastereotopic and therefore the crystal of the complex may be considered as a solid solution of two covalent diastereomers (Kwiatkowski et al., 2006). A rare case of two diastereomers in one crystal was demonstrated earlier (Fulwood et al., 1995), in which is resolved the crystal structure of the monooxovanadium(V) Schiff base complex [VO(sal-L-ala)Bus]BusOH. Structures of dimeric vanadium(V) Schiff base complexes, but derived from racemic 1,2-diaminopropane, have already been reported (Root et al., 1993; Rayati et al., 2007, 2008).
Hydrogen bonds, C—H···π and π-π interactions stabilize a network formed with the dimeric molecules (Fig. 2, Table 1, 2 and 3).