organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(4-Amino­phen­yl)ethyl­­idene]benzohydrazide

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 19 June 2008; accepted 23 June 2008; online 28 June 2008)

Crystals of the title compound, C15H15N3O, were obtained from a condensation reaction of benzohydrazide and 1-(4-amino­phen­yl)ethanone. The mol­ecule assumes an E configuration with the amino­phenyl and benzohydrazide units located on opposite sites of the C=N double bond. In the crystal structure, the benzene rings of the mol­ecule are slightly twisted with respect to the central hydrazide, the dihedral angles being 18.22 (12) and 27.62 (12)°. The crystal structure contains inter­molecular N—H⋯O and weak C—H⋯N hydrogen bonding.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]). For a related structure, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1265.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O

  • Mr = 253.30

  • Monoclinic, P 21 /n

  • a = 12.261 (9) Å

  • b = 5.324 (4) Å

  • c = 19.882 (15) Å

  • β = 94.57 (2)°

  • V = 1293.7 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.42 × 0.36 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 10914 measured reflections

  • 2303 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.156

  • S = 1.05

  • 2303 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.86 2.44 3.169 (3) 143
C15—H15C⋯N2ii 0.96 2.62 3.468 (3) 147
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since some hydrazone derivatives have shown to be potential DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new hydrazone derivatives have been prepared in our laboratory (Shan et al., 2003). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The N2—C8 bond distance of 1.292 (2) Å indicates a typical CN double bond. The aminophenyl and benzohydrazide moieties located on the opposite sites of the CN bond, the molecule assumes an E configuration, similat to that found in a related compound, (E)-acetylpyrazine 4-nitrophenylhydrazone (Shan et al., 2008). The terminal benzene rings are slightly twisted to the central hydrazide (O1/C7/N1/N2), with dihedral angles of 18.22 (12)° between C1-benzene and hydrazide planes and 27.62 (12)° between aminophenylethylidene and hydrazide planes, indicating the approximately co-planar molecular structure except for methyl H atoms.

The crystal structure contains molecular classic N—H···O hydrogen bonding and weak C—H···N hydrogen bonding (Table 1).

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003). For a related structure, see: Shan et al. (2008).

Experimental top

Benzohydrazide (0.27 g, 2 mmol) was dissolved in ethanol (10 ml), then acetic acid (0.1 ml) was added to the ethanol solution with stirring. The solution was heated at 333 K for several minutes until the solution cleared. 1-(4-aminophenyl)ethanone (0.27 g, 2 mmol) was then added slowly into the solution, and the mixture was kept at 333 K with continuous stirring for 6 h. After the solution had cooled to room temperature yellow powder crystals appeared. The powder crystals were separated and washed with water three times. Recrystallization from an absolute ethanol yielded well shaped single crystals of the title compound.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
(E)-N'-[1-(4-Aminophenyl)ethylidene]benzohydrazide top
Crystal data top
C15H15N3OF(000) = 536
Mr = 253.30Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3256 reflections
a = 12.261 (9) Åθ = 2.0–25.0°
b = 5.324 (4) ŵ = 0.08 mm1
c = 19.882 (15) ÅT = 295 K
β = 94.57 (2)°Prism, yellow
V = 1293.7 (17) Å30.42 × 0.36 × 0.32 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1594 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.2°, θmin = 1.9°
Detector resolution: 10.00 pixels mm-1h = 1413
ω scansk = 66
10914 measured reflectionsl = 2323
2303 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2303 reflectionsΔρmax = 0.21 e Å3
174 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (5)
Crystal data top
C15H15N3OV = 1293.7 (17) Å3
Mr = 253.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.261 (9) ŵ = 0.08 mm1
b = 5.324 (4) ÅT = 295 K
c = 19.882 (15) Å0.42 × 0.36 × 0.32 mm
β = 94.57 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1594 reflections with I > 2σ(I)
10914 measured reflectionsRint = 0.042
2303 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2303 reflectionsΔρmin = 0.15 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31065 (12)0.5389 (3)0.53755 (7)0.0458 (4)
H10.33490.38810.53440.055*
N20.21647 (12)0.6131 (3)0.49876 (7)0.0445 (4)
N30.22800 (14)0.7277 (3)0.31088 (8)0.0636 (5)
H3A0.25490.63750.27770.076*
H3B0.26160.86090.32230.076*
O10.33735 (12)0.9288 (3)0.58300 (7)0.0629 (5)
C10.45840 (15)0.6003 (3)0.62353 (9)0.0436 (5)
C20.51973 (16)0.3936 (4)0.60532 (10)0.0542 (6)
H20.50190.31190.56460.065*
C30.60765 (18)0.3099 (4)0.64827 (12)0.0653 (6)
H30.64890.17360.63570.078*
C40.63412 (18)0.4268 (4)0.70911 (11)0.0646 (6)
H40.69270.36920.73750.078*
C50.57340 (18)0.6300 (4)0.72783 (10)0.0620 (6)
H50.59040.70840.76910.074*
C60.48743 (16)0.7162 (4)0.68502 (9)0.0545 (6)
H60.44790.85530.69760.065*
C70.36407 (15)0.7045 (4)0.58023 (8)0.0449 (5)
C80.17939 (15)0.4585 (3)0.45231 (8)0.0402 (5)
C90.07430 (14)0.5262 (3)0.41483 (8)0.0397 (5)
C100.01535 (15)0.7400 (3)0.43293 (8)0.0450 (5)
H100.04370.83970.46850.054*
C110.08369 (16)0.8054 (4)0.39912 (9)0.0480 (5)
H110.11990.94920.41180.058*
C120.12988 (15)0.6578 (4)0.34612 (9)0.0477 (5)
C130.07350 (17)0.4434 (4)0.32890 (9)0.0536 (6)
H130.10320.34030.29440.064*
C140.02614 (16)0.3814 (3)0.36233 (9)0.0496 (5)
H140.06220.23780.34920.060*
C150.23698 (17)0.2176 (3)0.43604 (10)0.0544 (6)
H15A0.31410.24810.43610.082*
H15B0.20930.15870.39230.082*
H15C0.22410.09290.46940.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0451 (10)0.0419 (9)0.0490 (9)0.0038 (7)0.0059 (7)0.0028 (7)
N20.0436 (10)0.0446 (10)0.0437 (8)0.0004 (7)0.0059 (7)0.0019 (7)
N30.0596 (12)0.0707 (12)0.0572 (10)0.0061 (10)0.0166 (8)0.0062 (9)
O10.0652 (10)0.0461 (9)0.0735 (10)0.0083 (7)0.0176 (8)0.0082 (7)
C10.0390 (11)0.0435 (11)0.0478 (10)0.0025 (9)0.0012 (8)0.0016 (8)
C20.0469 (13)0.0506 (12)0.0643 (12)0.0026 (9)0.0000 (10)0.0059 (10)
C30.0582 (14)0.0520 (13)0.0851 (16)0.0127 (11)0.0029 (12)0.0019 (11)
C40.0526 (14)0.0656 (15)0.0735 (15)0.0092 (11)0.0078 (11)0.0144 (12)
C50.0581 (14)0.0714 (15)0.0537 (12)0.0061 (12)0.0128 (10)0.0033 (11)
C60.0530 (13)0.0545 (13)0.0545 (12)0.0089 (10)0.0046 (9)0.0078 (10)
C70.0440 (12)0.0439 (11)0.0463 (10)0.0004 (9)0.0011 (8)0.0029 (8)
C80.0467 (11)0.0343 (10)0.0395 (9)0.0034 (8)0.0020 (8)0.0043 (7)
C90.0440 (11)0.0346 (10)0.0398 (9)0.0047 (8)0.0011 (8)0.0047 (7)
C100.0487 (12)0.0419 (11)0.0433 (10)0.0021 (9)0.0031 (8)0.0043 (8)
C110.0474 (12)0.0476 (12)0.0487 (10)0.0028 (9)0.0030 (9)0.0027 (9)
C120.0485 (12)0.0492 (12)0.0442 (10)0.0055 (9)0.0036 (9)0.0126 (8)
C130.0646 (14)0.0466 (12)0.0462 (11)0.0057 (10)0.0160 (10)0.0004 (9)
C140.0622 (14)0.0380 (11)0.0469 (10)0.0019 (9)0.0071 (10)0.0020 (8)
C150.0584 (13)0.0437 (12)0.0588 (12)0.0055 (10)0.0095 (10)0.0035 (9)
Geometric parameters (Å, º) top
N1—C71.355 (2)C5—H50.9300
N1—N21.394 (2)C6—H60.9300
N1—H10.8600C8—C91.481 (3)
N2—C81.292 (2)C8—C151.512 (3)
N3—C121.394 (2)C9—C141.391 (2)
N3—H3A0.8600C9—C101.410 (3)
N3—H3B0.8600C10—C111.385 (3)
O1—C71.241 (2)C10—H100.9300
C1—C61.390 (3)C11—C121.398 (3)
C1—C21.396 (3)C11—H110.9300
C1—C71.493 (3)C12—C131.391 (3)
C2—C31.394 (3)C13—C141.384 (3)
C2—H20.9300C13—H130.9300
C3—C41.376 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.381 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.380 (3)
C7—N1—N2120.00 (16)N2—C8—C9116.56 (16)
C7—N1—H1120.0N2—C8—C15123.33 (17)
N2—N1—H1120.0C9—C8—C15120.10 (16)
C8—N2—N1116.36 (16)C14—C9—C10116.33 (17)
C12—N3—H3A120.0C14—C9—C8122.89 (17)
C12—N3—H3B120.0C10—C9—C8120.74 (16)
H3A—N3—H3B120.0C11—C10—C9121.78 (17)
C6—C1—C2118.19 (18)C11—C10—H10119.1
C6—C1—C7118.33 (17)C9—C10—H10119.1
C2—C1—C7123.48 (17)C10—C11—C12120.77 (18)
C3—C2—C1119.9 (2)C10—C11—H11119.6
C3—C2—H2120.0C12—C11—H11119.6
C1—C2—H2120.0C13—C12—N3121.40 (18)
C4—C3—C2120.7 (2)C13—C12—C11117.86 (18)
C4—C3—H3119.6N3—C12—C11120.73 (19)
C2—C3—H3119.6C14—C13—C12120.99 (17)
C3—C4—C5119.8 (2)C14—C13—H13119.5
C3—C4—H4120.1C12—C13—H13119.5
C5—C4—H4120.1C13—C14—C9122.26 (18)
C6—C5—C4119.8 (2)C13—C14—H14118.9
C6—C5—H5120.1C9—C14—H14118.9
C4—C5—H5120.1C8—C15—H15A109.5
C5—C6—C1121.62 (19)C8—C15—H15B109.5
C5—C6—H6119.2H15A—C15—H15B109.5
C1—C6—H6119.2C8—C15—H15C109.5
O1—C7—N1122.51 (17)H15A—C15—H15C109.5
O1—C7—C1121.83 (16)H15B—C15—H15C109.5
N1—C7—C1115.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.862.443.169 (3)143
C15—H15C···N2ii0.962.623.468 (3)147
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H15N3O
Mr253.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)12.261 (9), 5.324 (4), 19.882 (15)
β (°) 94.57 (2)
V3)1293.7 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.36 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10914, 2303, 1594
Rint0.042
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.156, 1.06
No. of reflections2303
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.862.443.169 (3)143
C15—H15C···N2ii0.962.623.468 (3)147
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds