metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[6-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)picolinato-κ2N,O]manganese(II) bis­­(3,5-di­nitro­benzoic acid) solvate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 5 January 2008; accepted 2 June 2008; online 7 June 2008)

In the title complex, [Mn(C11H10N3O2)2]·2C7H4N2O6, the MnII atom has a disorted octa­hedral coordination formed by four N and two O atoms of two mer-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands (DMPP). Each of the two symmetry-independent 3,5-dinitro­benzoic acid mol­ecules is linked to the mol­ecule of the complex via a hydrogen bond involving its carboxylic H atom and one of the DMPP ligands of the complex. However, in one of the DMPP ligands, the non-coordinated carbonyl O atom serves as the hydrogen-bond acceptor, whereas in the second ligand it is the Mn-coordinated O atom which is involved in the hydrogen bonding.

Related literature

For related literature, see: Feng et al. (2008[Feng, Y., Kai, Z., Yin, X.-H., Zhu, J. & Lin, C.-W. (2008). Acta Cryst. E64, m86.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]); Zhao et al. (2007[Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H10N3O2)2]·2C7H4N2O6

  • Mr = 911.62

  • Triclinic, [P \overline 1]

  • a = 10.4291 (10) Å

  • b = 13.7472 (18) Å

  • c = 15.736 (2) Å

  • α = 69.180 (1)°

  • β = 88.085 (2)°

  • γ = 67.968 (1)°

  • V = 1941.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 (2) K

  • 0.55 × 0.50 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.854

  • 10090 measured reflections

  • 6713 independent reflections

  • 4919 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.03

  • 6713 reflections

  • 570 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.1837 (19)
Mn1—O3 2.167 (2)
Mn1—N1 2.207 (2)
Mn1—N3 2.215 (2)
Mn1—N4 2.222 (2)
Mn1—N6 2.282 (2)
O3—Mn1—O1 93.24 (8)
O3—Mn1—N1 106.48 (7)
O1—Mn1—N1 72.91 (7)
O3—Mn1—N3 96.33 (8)
O1—Mn1—N3 143.17 (7)
N1—Mn1—N3 70.27 (8)
O3—Mn1—N4 72.54 (7)
O1—Mn1—N4 96.62 (7)
N1—Mn1—N4 169.48 (8)
N3—Mn1—N4 120.18 (8)
O3—Mn1—N6 141.46 (7)
O1—Mn1—N6 97.83 (8)
N1—Mn1—N6 112.06 (8)
N3—Mn1—N6 96.48 (8)
N4—Mn1—N6 69.58 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4 0.82 1.76 2.575 (3) 171
O12—H12⋯O1 0.82 1.76 2.552 (3) 162

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007), bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5-hydrate (Zhao et al., 2007), and bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)manganese(II) trihydrate (Feng et al., 2008), In continuation of these studies, we report here the crystal structure of bis(3,5-dinitrobenzoic acid) solvate of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)manganese(II).

The Mn1 atom (Fig. 1) has a distorted octahedral environment formed by four N and two O atoms of two mer-coordinated 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato (DMPP) ligands. The Mn—O and Mn—N bond lengths (Table 1) are close to those found in similar compounds, e.g. in the most recently studied trihydrate manganese complex reported by Feng et al. (2008).

The crystal structure is built of the isolated units, each of them made up of the complex molecule and two 3,5-dinitrobenzoic acid molecules. Each of the 3,5-dinitrobenzoic acid molecules is linked to the molecule of the complex via H-bond involving its carboxylic H atom and one of the DMPP ligands of the complex, however in one of the DMPP ligands the non-coordinated carbonyl oxygen O4 serves as the H-bond acceptor, whereas in the second ligand it is the Mn-coordinated O1 atom, which is involved in the H-bonding (Table 2).

Related literature top

For related literature, see: Feng et al. (2008); Yin et al. (2007); Zhao et al. (2007).

Experimental top

6-(3-Chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, 3,5-dinitrobenzoic acid and MnCl2.6H2O are available commercially and were used without further purification. 1 mmol (250 mg) of 6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid and 1 mmol (212 mg) of 3,5-dinitrobenzoic acid were dissolved in 15 ml of anhydrous ethyl alcohol (15 ml). The mixture was stirred to give a clear solution, then 0.5 mmol (142 mg) of MnCl2.6H2O in 10 ml of anhydrous alcohol were added. The suspension was stirred for ca 4 hrs and filtered. After keeping the filtrate in air for one week, colorless prisms of the title compound precipitated. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (yield 75%). Elemental analysis: found C, 47.23; H, 3.30; N, 15.13.; calc. for C36H28MnN10O16: C, 47.43; H, 3.10; N, 15.36.

Refinement top

H atoms bound to the C atoms were positoned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for H atoms in aromatic rings. Two H atoms bound to the O atoms were located in the difference Fourier map and then refined using riding model, the idealized O—H distance of 0.82 Å, and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme; H atoms are represented as small circles of arbitrary radius. The bonds in the coordination sphere of the Mn1 atom are drawn as solid sticks; the rest of the bonds in the ligands and dinitrobenzoic moelecules are depicted as hollow sticks; H-bonds are shown as dashed lines.
Bis[6-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)picolinato- κ2N,O]manganese(II) bis(3,5-dinitrobenzoic acid) solvate top
Crystal data top
[Mn(C11H10N3O2)2]·2C7H4N2O6Z = 2
Mr = 911.62F(000) = 934
Triclinic, P1Dx = 1.559 Mg m3
a = 10.4291 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7472 (18) ÅCell parameters from 4193 reflections
c = 15.736 (2) Åθ = 2.3–27.2°
α = 69.180 (1)°µ = 0.43 mm1
β = 88.085 (2)°T = 298 K
γ = 67.968 (1)°Block, colourless
V = 1941.7 (4) Å30.55 × 0.50 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6713 independent reflections
Radiation source: fine-focus sealed tube4919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.798, Tmax = 0.854k = 1616
10090 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.4835P]
where P = (Fo2 + 2Fc2)/3
6713 reflections(Δ/σ)max = 0.001
570 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C11H10N3O2)2]·2C7H4N2O6γ = 67.968 (1)°
Mr = 911.62V = 1941.7 (4) Å3
Triclinic, P1Z = 2
a = 10.4291 (10) ÅMo Kα radiation
b = 13.7472 (18) ŵ = 0.43 mm1
c = 15.736 (2) ÅT = 298 K
α = 69.180 (1)°0.55 × 0.50 × 0.38 mm
β = 88.085 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4919 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.854Rint = 0.029
10090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
6713 reflectionsΔρmin = 0.45 e Å3
570 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.63361 (4)0.53951 (3)0.25213 (2)0.03494 (14)
N10.6091 (2)0.43850 (17)0.39159 (13)0.0313 (5)
N20.8413 (2)0.38572 (18)0.42839 (13)0.0357 (5)
N30.8389 (2)0.44519 (19)0.33637 (14)0.0394 (6)
N40.6159 (2)0.65388 (18)0.10779 (13)0.0326 (5)
N50.6647 (2)0.50244 (18)0.06512 (13)0.0363 (5)
N60.6784 (2)0.44054 (19)0.15744 (14)0.0399 (6)
N70.6338 (3)0.7621 (2)0.67814 (18)0.0599 (8)
N80.8598 (3)1.0309 (2)0.5605 (2)0.0562 (7)
N90.1281 (4)1.0940 (5)0.1595 (2)0.0954 (14)
N100.0870 (4)1.2586 (3)0.0755 (3)0.0849 (10)
O10.41227 (19)0.57206 (16)0.25620 (12)0.0420 (5)
O20.2485 (2)0.5314 (2)0.33903 (15)0.0613 (6)
O30.6057 (2)0.70344 (16)0.25314 (12)0.0451 (5)
O40.5467 (3)0.88701 (18)0.17175 (13)0.0585 (6)
O50.6033 (3)1.0434 (2)0.28162 (15)0.0767 (8)
O60.5769 (3)0.8812 (2)0.33545 (14)0.0712 (7)
H60.56870.88960.28140.107*
O70.5504 (4)0.7274 (2)0.66235 (17)0.0862 (9)
O80.6893 (3)0.7358 (3)0.75365 (17)0.0982 (10)
O90.9080 (3)1.0042 (3)0.63827 (18)0.0874 (9)
O100.8765 (3)1.1041 (2)0.49409 (18)0.0671 (6)
O110.2409 (3)0.8355 (2)0.24857 (16)0.0873 (9)
O120.2601 (3)0.7649 (2)0.13889 (15)0.0682 (7)
H120.29330.70380.18150.102*
O130.1350 (5)1.0131 (4)0.1773 (2)0.1319 (16)
O140.1116 (4)1.1865 (4)0.2162 (2)0.1370 (15)
O150.0689 (4)1.3489 (3)0.0138 (3)0.1250 (13)
O160.0784 (4)1.2459 (3)0.1555 (3)0.1114 (12)
C10.3686 (3)0.5203 (2)0.32928 (19)0.0399 (7)
C20.4808 (3)0.4421 (2)0.40902 (17)0.0333 (6)
C30.4560 (3)0.3818 (2)0.49408 (18)0.0397 (7)
H30.36660.38570.50590.048*
C40.5677 (3)0.3153 (2)0.56142 (18)0.0426 (7)
H40.55380.27260.61910.051*
C50.6996 (3)0.3115 (2)0.54414 (17)0.0400 (7)
H50.77520.26710.58910.048*
C60.7153 (3)0.3762 (2)0.45728 (16)0.0326 (6)
C71.0062 (3)0.2924 (3)0.57596 (19)0.0605 (9)
H7A0.93840.33110.60800.091*
H7B1.09620.28840.59280.091*
H7C1.00900.21740.59180.091*
C80.9671 (3)0.3553 (2)0.47501 (18)0.0427 (7)
C91.0458 (3)0.3950 (3)0.4115 (2)0.0504 (8)
H91.13690.38710.42230.060*
C100.9632 (3)0.4497 (3)0.32706 (19)0.0455 (7)
C110.9977 (4)0.5078 (3)0.2347 (2)0.0704 (11)
H11A1.03960.45390.20610.106*
H11B1.06160.54060.24110.106*
H11C0.91410.56610.19750.106*
C120.5758 (3)0.7874 (2)0.17932 (18)0.0397 (7)
C130.5764 (3)0.7638 (2)0.09248 (17)0.0362 (6)
C140.5378 (3)0.8447 (2)0.00519 (18)0.0464 (7)
H140.51230.92080.00490.056*
C150.5381 (3)0.8095 (3)0.06682 (19)0.0521 (8)
H150.51150.86250.12630.063*
C160.5775 (3)0.6968 (3)0.05140 (17)0.0475 (8)
H160.57630.67240.09930.057*
C170.6189 (3)0.6209 (2)0.03810 (16)0.0337 (6)
C180.7141 (4)0.4711 (3)0.0843 (2)0.0692 (11)
H18A0.62160.50990.11600.104*
H18B0.76320.40670.10040.104*
H18C0.76250.52130.10120.104*
C190.7066 (3)0.4332 (3)0.01624 (19)0.0437 (7)
C200.7459 (3)0.3264 (3)0.0790 (2)0.0518 (8)
H200.77870.26040.06680.062*
C210.7286 (3)0.3334 (2)0.1647 (2)0.0452 (7)
C220.7617 (4)0.2397 (3)0.2570 (2)0.0690 (10)
H22A0.86040.20660.27460.104*
H22B0.73110.18320.25400.104*
H22C0.71490.26960.30120.104*
C230.6100 (3)0.9592 (3)0.34256 (19)0.0449 (7)
C240.6568 (3)0.9360 (2)0.43964 (17)0.0386 (7)
C250.6248 (3)0.8595 (2)0.51314 (18)0.0417 (7)
H250.57390.82070.50350.050*
C260.6697 (3)0.8422 (2)0.60026 (18)0.0448 (7)
C270.7473 (3)0.8953 (3)0.61884 (19)0.0480 (8)
H270.77860.88070.67850.058*
C280.7766 (3)0.9718 (2)0.54407 (19)0.0436 (7)
C290.7330 (3)0.9929 (2)0.45572 (18)0.0429 (7)
H290.75421.04490.40700.052*
C300.2307 (3)0.8463 (3)0.1699 (2)0.0560 (9)
C310.1851 (3)0.9618 (3)0.0943 (2)0.0524 (8)
C320.1775 (3)0.9741 (3)0.0033 (2)0.0584 (9)
H320.19830.91150.01300.070*
C330.1384 (3)1.0810 (4)0.0627 (2)0.0646 (10)
C340.1096 (3)1.1753 (3)0.0417 (2)0.0680 (11)
H340.08621.24660.08710.082*
C350.1167 (3)1.1597 (3)0.0496 (2)0.0611 (9)
C360.1546 (3)1.0540 (3)0.1184 (2)0.0569 (9)
H360.15911.04570.17960.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0381 (2)0.0356 (2)0.0248 (2)0.01310 (19)0.00740 (16)0.00572 (17)
N10.0349 (12)0.0287 (12)0.0300 (11)0.0121 (10)0.0109 (9)0.0113 (9)
N20.0338 (12)0.0396 (13)0.0252 (11)0.0117 (10)0.0073 (9)0.0056 (9)
N30.0372 (13)0.0442 (14)0.0286 (11)0.0159 (11)0.0081 (9)0.0046 (10)
N40.0358 (12)0.0327 (12)0.0267 (11)0.0121 (10)0.0058 (9)0.0096 (9)
N50.0424 (13)0.0362 (13)0.0272 (11)0.0131 (11)0.0092 (9)0.0110 (10)
N60.0462 (14)0.0368 (13)0.0301 (11)0.0137 (11)0.0112 (10)0.0080 (10)
N70.083 (2)0.0513 (17)0.0403 (16)0.0244 (16)0.0222 (15)0.0146 (13)
N80.0551 (17)0.0574 (18)0.0615 (18)0.0171 (15)0.0109 (14)0.0335 (15)
N90.071 (2)0.134 (4)0.042 (2)0.025 (3)0.0057 (16)0.003 (2)
N100.068 (2)0.065 (2)0.104 (3)0.0218 (19)0.010 (2)0.015 (2)
O10.0384 (11)0.0420 (11)0.0366 (10)0.0129 (9)0.0059 (8)0.0076 (9)
O20.0373 (12)0.0760 (16)0.0668 (15)0.0272 (12)0.0097 (10)0.0169 (12)
O30.0650 (13)0.0411 (11)0.0289 (10)0.0225 (10)0.0087 (9)0.0110 (9)
O40.0921 (18)0.0396 (13)0.0443 (12)0.0249 (12)0.0048 (11)0.0164 (10)
O50.137 (2)0.0535 (15)0.0394 (12)0.0481 (16)0.0085 (13)0.0030 (11)
O60.134 (2)0.0642 (16)0.0371 (12)0.0586 (16)0.0135 (14)0.0216 (11)
O70.143 (3)0.0771 (19)0.0665 (17)0.071 (2)0.0429 (17)0.0312 (14)
O80.126 (3)0.114 (2)0.0384 (15)0.056 (2)0.0121 (15)0.0002 (14)
O90.105 (2)0.114 (2)0.0646 (17)0.0570 (19)0.0005 (15)0.0414 (16)
O100.0728 (17)0.0604 (16)0.0782 (17)0.0328 (14)0.0170 (13)0.0304 (14)
O110.117 (2)0.0644 (17)0.0390 (14)0.0049 (16)0.0073 (13)0.0050 (12)
O120.0737 (17)0.0556 (15)0.0514 (13)0.0116 (14)0.0046 (12)0.0063 (12)
O130.149 (4)0.175 (4)0.058 (2)0.050 (3)0.0134 (19)0.042 (2)
O140.143 (3)0.152 (3)0.0457 (17)0.040 (3)0.0029 (18)0.024 (2)
O150.127 (3)0.060 (2)0.153 (3)0.035 (2)0.000 (2)0.001 (2)
O160.128 (3)0.082 (2)0.111 (3)0.023 (2)0.025 (2)0.036 (2)
C10.0371 (16)0.0371 (16)0.0486 (17)0.0163 (13)0.0094 (13)0.0175 (13)
C20.0381 (15)0.0305 (14)0.0376 (14)0.0175 (12)0.0127 (11)0.0159 (11)
C30.0458 (17)0.0439 (17)0.0396 (15)0.0267 (14)0.0197 (13)0.0184 (13)
C40.061 (2)0.0400 (16)0.0306 (14)0.0269 (15)0.0192 (13)0.0103 (12)
C50.0502 (17)0.0357 (15)0.0283 (13)0.0145 (14)0.0100 (12)0.0080 (11)
C60.0346 (14)0.0301 (14)0.0298 (13)0.0096 (12)0.0083 (11)0.0111 (11)
C70.0449 (18)0.079 (2)0.0377 (17)0.0127 (17)0.0014 (13)0.0106 (16)
C80.0343 (15)0.0438 (17)0.0382 (15)0.0050 (13)0.0025 (12)0.0126 (13)
C90.0297 (15)0.059 (2)0.0505 (18)0.0125 (15)0.0058 (13)0.0125 (15)
C100.0368 (16)0.0527 (19)0.0427 (16)0.0184 (14)0.0120 (13)0.0122 (14)
C110.051 (2)0.094 (3)0.0475 (19)0.033 (2)0.0153 (15)0.0018 (18)
C120.0457 (17)0.0393 (17)0.0363 (15)0.0180 (14)0.0087 (12)0.0154 (13)
C130.0394 (15)0.0346 (15)0.0331 (14)0.0148 (13)0.0073 (11)0.0106 (12)
C140.060 (2)0.0345 (16)0.0375 (15)0.0177 (15)0.0046 (13)0.0063 (12)
C150.073 (2)0.0425 (18)0.0271 (14)0.0179 (16)0.0030 (14)0.0014 (13)
C160.064 (2)0.0482 (19)0.0261 (14)0.0197 (16)0.0066 (13)0.0113 (13)
C170.0342 (14)0.0359 (15)0.0292 (13)0.0128 (12)0.0093 (11)0.0113 (11)
C180.096 (3)0.065 (2)0.0479 (19)0.021 (2)0.0194 (18)0.0344 (18)
C190.0505 (18)0.0485 (18)0.0416 (16)0.0219 (15)0.0131 (13)0.0250 (14)
C200.063 (2)0.0414 (18)0.0588 (19)0.0210 (16)0.0165 (16)0.0273 (15)
C210.0476 (17)0.0351 (16)0.0500 (17)0.0160 (14)0.0143 (13)0.0133 (13)
C220.089 (3)0.0366 (18)0.062 (2)0.0183 (19)0.0154 (19)0.0035 (16)
C230.0583 (19)0.0384 (17)0.0365 (16)0.0159 (15)0.0096 (13)0.0158 (14)
C240.0482 (17)0.0297 (14)0.0320 (14)0.0077 (13)0.0086 (12)0.0131 (12)
C250.0493 (17)0.0329 (15)0.0417 (16)0.0115 (14)0.0125 (13)0.0179 (13)
C260.0576 (19)0.0339 (16)0.0355 (15)0.0114 (15)0.0144 (13)0.0121 (12)
C270.0533 (19)0.0459 (18)0.0347 (15)0.0061 (15)0.0073 (13)0.0179 (14)
C280.0461 (17)0.0401 (16)0.0446 (16)0.0108 (14)0.0102 (13)0.0223 (14)
C290.0500 (17)0.0363 (16)0.0364 (15)0.0103 (14)0.0111 (13)0.0142 (12)
C300.0493 (19)0.054 (2)0.0444 (19)0.0088 (16)0.0067 (14)0.0078 (16)
C310.0389 (17)0.055 (2)0.0418 (17)0.0087 (15)0.0049 (13)0.0035 (15)
C320.0439 (19)0.063 (2)0.050 (2)0.0131 (17)0.0055 (14)0.0094 (17)
C330.0432 (19)0.082 (3)0.0407 (18)0.0164 (19)0.0057 (14)0.0001 (18)
C340.045 (2)0.067 (3)0.058 (2)0.0190 (19)0.0007 (16)0.0136 (19)
C350.0429 (19)0.052 (2)0.071 (2)0.0156 (16)0.0008 (16)0.0062 (18)
C360.0446 (18)0.059 (2)0.0497 (18)0.0141 (16)0.0008 (14)0.0062 (16)
Geometric parameters (Å, º) top
Mn1—O12.1837 (19)C7—H7A0.9600
Mn1—O32.167 (2)C7—H7B0.9600
Mn1—N12.207 (2)C7—H7C0.9600
Mn1—N32.215 (2)C8—C91.365 (4)
Mn1—N42.222 (2)C9—C101.397 (4)
Mn1—N62.282 (2)C9—H90.9300
N1—C61.329 (3)C10—C111.495 (4)
N1—C21.343 (3)C11—H11A0.9600
N2—C81.367 (3)C11—H11B0.9600
N2—N31.383 (3)C11—H11C0.9600
N2—C61.413 (3)C12—C131.512 (4)
N3—C101.322 (3)C13—C141.379 (4)
N4—C171.323 (3)C14—C151.381 (4)
N4—C131.338 (3)C14—H140.9300
N5—C191.369 (3)C15—C161.375 (4)
N5—N61.378 (3)C15—H150.9300
N5—C171.414 (3)C16—C171.384 (4)
N6—C211.328 (4)C16—H160.9300
N7—O71.206 (4)C18—C191.488 (4)
N7—O81.209 (4)C18—H18A0.9600
N7—C261.475 (4)C18—H18B0.9600
N8—O91.212 (3)C18—H18C0.9600
N8—O101.228 (3)C19—C201.358 (4)
N8—C281.474 (4)C20—C211.386 (4)
N9—O131.217 (5)C20—H200.9300
N9—O141.217 (5)C21—C221.502 (4)
N9—C331.471 (5)C22—H22A0.9600
N10—O161.213 (5)C22—H22B0.9600
N10—O151.224 (4)C22—H22C0.9600
N10—C351.477 (5)C23—C241.503 (4)
O1—C11.290 (3)C24—C251.388 (4)
O2—C11.215 (3)C24—C291.389 (4)
O3—C121.257 (3)C25—C261.372 (4)
O4—C121.247 (3)C25—H250.9300
O5—C231.192 (3)C26—C271.372 (4)
O6—C231.283 (3)C27—C281.386 (4)
O6—H60.8200C27—H270.9300
O11—C301.197 (4)C28—C291.371 (4)
O12—C301.306 (4)C29—H290.9300
O12—H120.8200C30—C311.513 (4)
C1—C21.515 (4)C31—C361.372 (5)
C2—C31.376 (3)C31—C321.382 (4)
C3—C41.383 (4)C32—C331.379 (5)
C3—H30.9300C32—H320.9300
C4—C51.378 (4)C33—C341.373 (5)
C4—H40.9300C34—C351.375 (5)
C5—C61.384 (3)C34—H340.9300
C5—H50.9300C35—C361.386 (4)
C7—C81.497 (4)C36—H360.9300
O3—Mn1—O193.24 (8)C10—C11—H11C109.5
O3—Mn1—N1106.48 (7)H11A—C11—H11C109.5
O1—Mn1—N172.91 (7)H11B—C11—H11C109.5
O3—Mn1—N396.33 (8)O4—C12—O3126.0 (3)
O1—Mn1—N3143.17 (7)O4—C12—C13117.8 (2)
N1—Mn1—N370.27 (8)O3—C12—C13116.2 (2)
O3—Mn1—N472.54 (7)N4—C13—C14121.6 (2)
O1—Mn1—N496.62 (7)N4—C13—C12113.2 (2)
N1—Mn1—N4169.48 (8)C14—C13—C12125.2 (3)
N3—Mn1—N4120.18 (8)C13—C14—C15118.0 (3)
O3—Mn1—N6141.46 (7)C13—C14—H14121.0
O1—Mn1—N697.83 (8)C15—C14—H14121.0
N1—Mn1—N6112.06 (8)C16—C15—C14120.6 (3)
N3—Mn1—N696.48 (8)C16—C15—H15119.7
N4—Mn1—N669.58 (8)C14—C15—H15119.7
C6—N1—C2120.0 (2)C15—C16—C17117.6 (3)
C6—N1—Mn1122.45 (17)C15—C16—H16121.2
C2—N1—Mn1117.55 (16)C17—C16—H16121.2
C8—N2—N3110.7 (2)N4—C17—C16122.3 (3)
C8—N2—C6132.6 (2)N4—C17—N5113.2 (2)
N3—N2—C6116.5 (2)C16—C17—N5124.5 (2)
C10—N3—N2105.5 (2)C19—C18—H18A109.5
C10—N3—Mn1134.82 (18)C19—C18—H18B109.5
N2—N3—Mn1117.56 (15)H18A—C18—H18B109.5
C17—N4—C13119.9 (2)C19—C18—H18C109.5
C17—N4—Mn1122.50 (18)H18A—C18—H18C109.5
C13—N4—Mn1116.55 (16)H18B—C18—H18C109.5
C19—N5—N6111.0 (2)C20—C19—N5105.6 (2)
C19—N5—C17131.8 (2)C20—C19—C18128.9 (3)
N6—N5—C17117.1 (2)N5—C19—C18125.4 (3)
C21—N6—N5105.2 (2)C19—C20—C21107.7 (3)
C21—N6—Mn1138.08 (18)C19—C20—H20126.1
N5—N6—Mn1116.41 (16)C21—C20—H20126.1
O7—N7—O8124.3 (3)N6—C21—C20110.5 (3)
O7—N7—C26117.8 (3)N6—C21—C22120.5 (3)
O8—N7—C26117.9 (3)C20—C21—C22129.0 (3)
O9—N8—O10123.9 (3)C21—C22—H22A109.5
O9—N8—C28118.4 (3)C21—C22—H22B109.5
O10—N8—C28117.7 (3)H22A—C22—H22B109.5
O13—N9—O14124.7 (5)C21—C22—H22C109.5
O13—N9—C33118.4 (4)H22A—C22—H22C109.5
O14—N9—C33116.9 (5)H22B—C22—H22C109.5
O16—N10—O15124.5 (5)O5—C23—O6126.1 (3)
O16—N10—C35118.2 (4)O5—C23—C24121.3 (3)
O15—N10—C35117.3 (4)O6—C23—C24112.6 (2)
C1—O1—Mn1120.36 (17)C25—C24—C29119.6 (3)
C12—O3—Mn1120.21 (17)C25—C24—C23121.4 (3)
C23—O6—H6109.5C29—C24—C23119.0 (2)
C30—O12—H12109.5C26—C25—C24118.8 (3)
O2—C1—O1126.0 (3)C26—C25—H25120.6
O2—C1—C2119.3 (3)C24—C25—H25120.6
O1—C1—C2114.7 (2)C27—C26—C25123.3 (3)
N1—C2—C3121.4 (2)C27—C26—N7118.1 (3)
N1—C2—C1114.4 (2)C25—C26—N7118.6 (3)
C3—C2—C1124.1 (2)C26—C27—C28116.5 (3)
C2—C3—C4118.1 (3)C26—C27—H27121.7
C2—C3—H3120.9C28—C27—H27121.7
C4—C3—H3120.9C29—C28—C27122.4 (3)
C5—C4—C3120.8 (2)C29—C28—N8119.0 (3)
C5—C4—H4119.6C27—C28—N8118.6 (3)
C3—C4—H4119.6C28—C29—C24119.4 (3)
C4—C5—C6117.5 (3)C28—C29—H29120.3
C4—C5—H5121.2C24—C29—H29120.3
C6—C5—H5121.2O11—C30—O12126.2 (3)
N1—C6—C5122.1 (2)O11—C30—C31120.9 (3)
N1—C6—N2112.6 (2)O12—C30—C31112.8 (3)
C5—C6—N2125.3 (2)C36—C31—C32120.7 (3)
C8—C7—H7A109.5C36—C31—C30118.2 (3)
C8—C7—H7B109.5C32—C31—C30121.0 (3)
H7A—C7—H7B109.5C33—C32—C31118.6 (4)
C8—C7—H7C109.5C33—C32—H32120.7
H7A—C7—H7C109.5C31—C32—H32120.7
H7B—C7—H7C109.5C34—C33—C32122.6 (3)
C9—C8—N2106.2 (2)C34—C33—N9119.0 (4)
C9—C8—C7128.2 (3)C32—C33—N9118.4 (4)
N2—C8—C7125.6 (3)C33—C34—C35117.0 (3)
C8—C9—C10106.9 (3)C33—C34—H34121.5
C8—C9—H9126.5C35—C34—H34121.5
C10—C9—H9126.5C34—C35—C36122.4 (4)
N3—C10—C9110.6 (2)C34—C35—N10118.9 (3)
N3—C10—C11120.0 (3)C36—C35—N10118.6 (4)
C9—C10—C11129.4 (3)C31—C36—C35118.6 (3)
C10—C11—H11A109.5C31—C36—H36120.7
C10—C11—H11B109.5C35—C36—H36120.7
H11A—C11—H11B109.5
O3—Mn1—N1—C688.9 (2)Mn1—N3—C10—C9162.0 (2)
O1—Mn1—N1—C6177.2 (2)N2—N3—C10—C11179.3 (3)
N3—Mn1—N1—C62.06 (19)Mn1—N3—C10—C1118.2 (5)
N4—Mn1—N1—C6171.9 (4)C8—C9—C10—N30.1 (4)
N6—Mn1—N1—C691.1 (2)C8—C9—C10—C11179.7 (3)
O3—Mn1—N1—C290.78 (19)Mn1—O3—C12—O4174.0 (2)
O1—Mn1—N1—C22.46 (17)Mn1—O3—C12—C136.3 (3)
N3—Mn1—N1—C2178.3 (2)C17—N4—C13—C140.2 (4)
N4—Mn1—N1—C27.7 (5)Mn1—N4—C13—C14168.2 (2)
N6—Mn1—N1—C289.21 (19)C17—N4—C13—C12178.8 (2)
C8—N2—N3—C100.7 (3)Mn1—N4—C13—C1210.4 (3)
C6—N2—N3—C10175.6 (2)O4—C12—C13—N4176.7 (3)
C8—N2—N3—Mn1165.39 (18)O3—C12—C13—N43.0 (4)
C6—N2—N3—Mn19.6 (3)O4—C12—C13—C144.8 (4)
O3—Mn1—N3—C1061.7 (3)O3—C12—C13—C14175.5 (3)
O1—Mn1—N3—C10165.8 (2)N4—C13—C14—C151.3 (4)
N1—Mn1—N3—C10167.0 (3)C12—C13—C14—C15177.1 (3)
N4—Mn1—N3—C1011.8 (3)C13—C14—C15—C160.7 (5)
N6—Mn1—N3—C1081.9 (3)C14—C15—C16—C171.3 (5)
O3—Mn1—N3—N299.20 (18)C13—N4—C17—C162.4 (4)
O1—Mn1—N3—N24.9 (3)Mn1—N4—C17—C16165.3 (2)
N1—Mn1—N3—N26.07 (17)C13—N4—C17—N5179.1 (2)
N4—Mn1—N3—N2172.66 (16)Mn1—N4—C17—N513.2 (3)
N6—Mn1—N3—N2117.22 (18)C15—C16—C17—N42.9 (4)
O3—Mn1—N4—C17178.2 (2)C15—C16—C17—N5178.8 (3)
O1—Mn1—N4—C1786.9 (2)C19—N5—C17—N4166.3 (3)
N1—Mn1—N4—C1791.9 (5)N6—N5—C17—N49.8 (3)
N3—Mn1—N4—C1794.6 (2)C19—N5—C17—C1615.2 (5)
N6—Mn1—N4—C179.06 (19)N6—N5—C17—C16168.7 (3)
O3—Mn1—N4—C1310.18 (18)N6—N5—C19—C200.5 (3)
O1—Mn1—N4—C1381.15 (19)C17—N5—C19—C20176.8 (3)
N1—Mn1—N4—C1376.1 (5)N6—N5—C19—C18175.9 (3)
N3—Mn1—N4—C1397.4 (2)C17—N5—C19—C180.4 (5)
N6—Mn1—N4—C13177.1 (2)N5—C19—C20—C210.8 (4)
C19—N5—N6—C210.1 (3)C18—C19—C20—C21175.6 (3)
C17—N5—N6—C21177.0 (2)N5—N6—C21—C200.4 (3)
C19—N5—N6—Mn1174.34 (18)Mn1—N6—C21—C20172.9 (2)
C17—N5—N6—Mn12.5 (3)N5—N6—C21—C22178.1 (3)
O3—Mn1—N6—C21157.9 (3)Mn1—N6—C21—C225.5 (5)
O1—Mn1—N6—C2196.7 (3)C19—C20—C21—N60.7 (4)
N1—Mn1—N6—C2122.1 (3)C19—C20—C21—C22177.6 (3)
N3—Mn1—N6—C2149.2 (3)O5—C23—C24—C25159.6 (3)
N4—Mn1—N6—C21169.1 (3)O6—C23—C24—C2518.8 (4)
O3—Mn1—N6—N514.0 (2)O5—C23—C24—C2920.2 (4)
O1—Mn1—N6—N591.29 (17)O6—C23—C24—C29161.5 (3)
N1—Mn1—N6—N5165.96 (16)C29—C24—C25—C260.0 (4)
N3—Mn1—N6—N5122.74 (17)C23—C24—C25—C26179.7 (3)
N4—Mn1—N6—N52.90 (16)C24—C25—C26—C271.3 (4)
O3—Mn1—O1—C1108.8 (2)C24—C25—C26—N7179.2 (2)
N1—Mn1—O1—C12.53 (19)O7—N7—C26—C27170.2 (3)
N3—Mn1—O1—C13.7 (3)O8—N7—C26—C279.5 (4)
N4—Mn1—O1—C1178.4 (2)O7—N7—C26—C2510.2 (4)
N6—Mn1—O1—C1108.2 (2)O8—N7—C26—C25170.1 (3)
O1—Mn1—O3—C1287.1 (2)C25—C26—C27—C281.7 (4)
N1—Mn1—O3—C12160.2 (2)N7—C26—C27—C28178.7 (3)
N3—Mn1—O3—C12128.5 (2)C26—C27—C28—C291.0 (4)
N4—Mn1—O3—C128.8 (2)C26—C27—C28—N8179.9 (3)
N6—Mn1—O3—C1219.8 (3)O9—N8—C28—C29173.6 (3)
Mn1—O1—C1—O2179.6 (2)O10—N8—C28—C296.1 (4)
Mn1—O1—C1—C22.2 (3)O9—N8—C28—C275.3 (4)
C6—N1—C2—C30.3 (4)O10—N8—C28—C27175.0 (3)
Mn1—N1—C2—C3179.96 (19)C27—C28—C29—C240.1 (4)
C6—N1—C2—C1177.4 (2)N8—C28—C29—C24178.8 (3)
Mn1—N1—C2—C12.2 (3)C25—C24—C29—C280.6 (4)
O2—C1—C2—N1178.3 (3)C23—C24—C29—C28179.7 (2)
O1—C1—C2—N10.1 (3)O11—C30—C31—C360.5 (5)
O2—C1—C2—C30.6 (4)O12—C30—C31—C36178.5 (3)
O1—C1—C2—C3177.7 (2)O11—C30—C31—C32178.0 (3)
N1—C2—C3—C41.1 (4)O12—C30—C31—C320.0 (4)
C1—C2—C3—C4178.6 (3)C36—C31—C32—C330.1 (5)
C2—C3—C4—C51.3 (4)C30—C31—C32—C33178.5 (3)
C3—C4—C5—C60.2 (4)C31—C32—C33—C341.4 (5)
C2—N1—C6—C51.5 (4)C31—C32—C33—N9179.0 (3)
Mn1—N1—C6—C5178.84 (19)O13—N9—C33—C34170.1 (4)
C2—N1—C6—N2177.5 (2)O14—N9—C33—C349.1 (5)
Mn1—N1—C6—N22.1 (3)O13—N9—C33—C3210.2 (6)
C4—C5—C6—N11.3 (4)O14—N9—C33—C32170.6 (4)
C4—C5—C6—N2177.7 (3)C32—C33—C34—C352.1 (5)
C8—N2—C6—N1166.1 (3)N9—C33—C34—C35178.2 (3)
N3—N2—C6—N17.5 (3)C33—C34—C35—C361.6 (5)
C8—N2—C6—C512.9 (5)C33—C34—C35—N10179.8 (3)
N3—N2—C6—C5173.5 (2)O16—N10—C35—C34171.9 (4)
N3—N2—C8—C90.6 (3)O15—N10—C35—C346.1 (5)
C6—N2—C8—C9174.5 (3)O16—N10—C35—C369.9 (5)
N3—N2—C8—C7178.5 (3)O15—N10—C35—C36172.2 (3)
C6—N2—C8—C74.7 (5)C32—C31—C36—C350.4 (5)
N2—C8—C9—C100.3 (3)C30—C31—C36—C35178.1 (3)
C7—C8—C9—C10178.8 (3)C34—C35—C36—C310.4 (5)
N2—N3—C10—C90.4 (3)N10—C35—C36—C31178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.821.762.575 (3)171
O12—H12···O10.821.762.552 (3)162

Experimental details

Crystal data
Chemical formula[Mn(C11H10N3O2)2]·2C7H4N2O6
Mr911.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.4291 (10), 13.7472 (18), 15.736 (2)
α, β, γ (°)69.180 (1), 88.085 (2), 67.968 (1)
V3)1941.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.55 × 0.50 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
10090, 6713, 4919
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.03
No. of reflections6713
No. of parameters570
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.1837 (19)Mn1—N32.215 (2)
Mn1—O32.167 (2)Mn1—N42.222 (2)
Mn1—N12.207 (2)Mn1—N62.282 (2)
O3—Mn1—O193.24 (8)N1—Mn1—N4169.48 (8)
O3—Mn1—N1106.48 (7)N3—Mn1—N4120.18 (8)
O1—Mn1—N172.91 (7)O3—Mn1—N6141.46 (7)
O3—Mn1—N396.33 (8)O1—Mn1—N697.83 (8)
O1—Mn1—N3143.17 (7)N1—Mn1—N6112.06 (8)
N1—Mn1—N370.27 (8)N3—Mn1—N696.48 (8)
O3—Mn1—N472.54 (7)N4—Mn1—N669.58 (8)
O1—Mn1—N496.62 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.821.762.575 (3)170.7
O12—H12···O10.821.762.552 (3)161.9
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002), and the Ministry of Education Science and Technology Key Projects (grant No. 205121).

References

First citationFeng, Y., Kai, Z., Yin, X.-H., Zhu, J. & Lin, C.-W. (2008). Acta Cryst. E64, m86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds