organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-2-pyrazoline

aDepartment of Educational Science and Technology, Weifang University, Weifang 261061, People's Republic of China, and bExperimental Junior Middle School of Changle County, Weifang 261061, People's Republic of China
*Correspondence e-mail: lijiansdwf@163.com

(Received 18 May 2008; accepted 17 June 2008; online 5 July 2008)

In the title mol­ecule, C17H14ClFN2O, the mean plane of the pyrazoline ring makes dihedral angles of 18.19 (1) and 83.51 (4)° with the 4-chloro­benzene and 4-fluoro­benzene rings, respectively. The two benzene rings make a dihedral angle of 76.11 (2)°. Weak inter­molecular C—H⋯O hydrogen bonds help stabilize the crystal structure.

Related literature

For related literature, see: Dhal et al. (1975[Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196-1200.]); Fahrni et al. (2003[Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Kimura et al. (1977[Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786-1792.]); Lombardino & Ottemes (1981[Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830-834.]); Manna et al. (2002[Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett. 12, 3629-3635.]); Rawal et al. (1963[Rawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc. 40, 323-326.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClFN2O

  • Mr = 316.75

  • Monoclinic, P 21 /c

  • a = 14.5425 (19) Å

  • b = 11.3580 (14) Å

  • c = 9.6494 (13) Å

  • β = 108.154 (2)°

  • V = 1514.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 273 (2) K

  • 0.14 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7793 measured reflections

  • 2676 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.03

  • 2676 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1i 0.97 2.57 3.425 (2) 147
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoline and some of its derivatives demonstrate antiviral (Rawal et al., 1963), antifungal (Dhal et al., 1975), and immunosuppressive (Lombardino & Ottemes, 1981) activities. 1-Acetyl-3,5-diaryl-2-pyrazolines have been found to inhibit monoamine oxidases (Manna et al., 2002). As part of our ongoing investigation of pyrazolines and their metal complexes, we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal (Fahrni et al., 2003; Kimura et al., 1977). The mean plane of pyrazoline ring makes dihedral angles of 18.19 (1)° and 83.51 (4)° with 4-chlorobenzene ring and 4-fluorolbenzene ring, respectively. The dihedral angle between the two benzene rings is 76.11 (2)°. Weak intermolecular C—H···O hydrogen bonds help stabilize the crystal structure (Table 1). The crystal packing of (I) is shown in Fig. 2.

Related literature top

For related literature, see: Dhal et al. (1975); Fahrni et al. (2003); Kimura et al. (1977); Lombardino & Ottemes (1981); Manna et al. (2002); Rawal et al. (1963).

Experimental top

1-(4-chlorophenyl)-3-(4-fluorophenyl)-2-propenyl-1-ketone (0.02 mol)and hydrazine (0.02 mol)were mixed in 99.5% acetic acid (40 ml) and stirred in refluxing for 6 h, then the mixture was poured into ice-water to afford colourless solids.The solids were filtrated and washed with water until the pH of solution is about to 7.0. Finally, the solid crystals were dry under room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from EtOH at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.976 Å, and with Uiso=1.2–1.5Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the crysytal packing of (I) in the unit cell.
1-Acetyl-3-(4-chlorophenyl)-5-(4-fluorophenyl)-2-pyrazoline top
Crystal data top
C17H14ClFN2OF(000) = 656
Mr = 316.75Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2887 reflections
a = 14.5425 (19) Åθ = 2.9–25.9°
b = 11.3580 (14) ŵ = 0.27 mm1
c = 9.6494 (13) ÅT = 273 K
β = 108.154 (2)°Bar, colourless
V = 1514.5 (3) Å30.14 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2077 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.1°, θmin = 2.3°
ϕ and ω scansh = 1717
7793 measured reflectionsk = 1311
2676 independent reflectionsl = 119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.4849P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2676 reflectionsΔρmax = 0.20 e Å3
200 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (10)
Crystal data top
C17H14ClFN2OV = 1514.5 (3) Å3
Mr = 316.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5425 (19) ŵ = 0.27 mm1
b = 11.3580 (14) ÅT = 273 K
c = 9.6494 (13) Å0.14 × 0.12 × 0.06 mm
β = 108.154 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2077 reflections with I > 2σ(I)
7793 measured reflectionsRint = 0.021
2676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2676 reflectionsΔρmin = 0.21 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45884 (5)0.34606 (6)0.02764 (8)0.0949 (3)
F10.70769 (11)0.14714 (11)1.10898 (14)0.0851 (4)
O11.00066 (10)0.13914 (13)0.72130 (15)0.0685 (4)
N10.88095 (10)0.02205 (13)0.59652 (15)0.0491 (4)
N20.80952 (10)0.00960 (13)0.46876 (15)0.0477 (4)
C10.93307 (15)0.17908 (18)0.4668 (2)0.0610 (5)
H1A0.96610.13610.41090.092*
H1B0.86600.18730.41110.092*
H1C0.96170.25570.48980.092*
C20.94144 (13)0.11419 (16)0.6044 (2)0.0494 (4)
C30.88134 (13)0.05353 (16)0.72122 (18)0.0477 (4)
H30.94740.07970.77300.057*
C40.82018 (14)0.15743 (16)0.64155 (19)0.0500 (5)
H4A0.77280.18080.68810.060*
H4B0.86040.22460.63730.060*
C50.77233 (12)0.10719 (16)0.49247 (18)0.0454 (4)
C60.83785 (12)0.00700 (15)0.82540 (18)0.0446 (4)
C70.76197 (13)0.08590 (17)0.7766 (2)0.0530 (5)
H70.74040.10700.67860.064*
C80.71794 (15)0.13366 (18)0.8711 (2)0.0593 (5)
H80.66710.18680.83820.071*
C90.75105 (15)0.10081 (18)1.0151 (2)0.0574 (5)
C100.82613 (14)0.02457 (17)1.0681 (2)0.0537 (5)
H100.84740.00441.16640.064*
C110.86977 (13)0.02200 (16)0.97206 (18)0.0481 (4)
H110.92150.07371.00650.058*
C120.69236 (12)0.16303 (16)0.37998 (19)0.0455 (4)
C130.63734 (14)0.10150 (18)0.2576 (2)0.0557 (5)
H130.64990.02220.24730.067*
C140.56443 (15)0.15720 (19)0.1515 (2)0.0621 (5)
H140.52750.11540.07030.075*
C150.54634 (13)0.27427 (18)0.1657 (2)0.0588 (5)
C160.59780 (14)0.33572 (18)0.2860 (3)0.0630 (6)
H160.58420.41470.29570.076*
C170.67020 (14)0.28007 (17)0.3936 (2)0.0558 (5)
H170.70460.32180.47640.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0695 (4)0.0900 (5)0.1055 (5)0.0056 (3)0.0012 (3)0.0364 (4)
F10.1184 (11)0.0792 (9)0.0750 (9)0.0204 (8)0.0552 (8)0.0010 (7)
O10.0622 (9)0.0758 (10)0.0578 (9)0.0125 (7)0.0045 (7)0.0014 (7)
N10.0505 (8)0.0581 (9)0.0370 (8)0.0056 (7)0.0111 (7)0.0052 (7)
N20.0485 (8)0.0565 (9)0.0372 (8)0.0015 (7)0.0121 (6)0.0026 (7)
C10.0680 (13)0.0577 (12)0.0615 (12)0.0051 (10)0.0261 (10)0.0078 (10)
C20.0464 (10)0.0528 (11)0.0501 (11)0.0025 (9)0.0167 (9)0.0005 (9)
C30.0456 (10)0.0571 (11)0.0393 (9)0.0055 (8)0.0115 (8)0.0086 (8)
C40.0573 (11)0.0502 (11)0.0437 (10)0.0045 (9)0.0177 (8)0.0045 (8)
C50.0474 (10)0.0504 (11)0.0413 (9)0.0051 (8)0.0180 (8)0.0026 (8)
C60.0431 (9)0.0497 (10)0.0381 (9)0.0034 (8)0.0084 (7)0.0024 (8)
C70.0529 (11)0.0613 (12)0.0416 (10)0.0062 (9)0.0098 (8)0.0067 (9)
C80.0599 (12)0.0570 (12)0.0623 (13)0.0115 (10)0.0209 (10)0.0044 (10)
C90.0710 (13)0.0546 (12)0.0542 (12)0.0017 (10)0.0302 (10)0.0049 (9)
C100.0666 (12)0.0541 (11)0.0388 (10)0.0037 (10)0.0142 (9)0.0018 (8)
C110.0487 (10)0.0498 (10)0.0416 (10)0.0001 (8)0.0078 (8)0.0043 (8)
C120.0452 (10)0.0504 (11)0.0441 (10)0.0035 (8)0.0188 (8)0.0003 (8)
C130.0609 (12)0.0519 (11)0.0513 (11)0.0008 (9)0.0131 (9)0.0012 (9)
C140.0592 (12)0.0677 (14)0.0526 (12)0.0076 (10)0.0075 (10)0.0003 (10)
C150.0450 (11)0.0608 (13)0.0685 (13)0.0036 (9)0.0144 (9)0.0141 (10)
C160.0534 (12)0.0488 (11)0.0880 (16)0.0000 (9)0.0238 (11)0.0063 (11)
C170.0511 (11)0.0532 (12)0.0636 (12)0.0058 (9)0.0183 (10)0.0062 (10)
Geometric parameters (Å, º) top
Cl1—C151.733 (2)C6—C71.385 (2)
F1—C91.361 (2)C7—C81.378 (3)
O1—C21.220 (2)C7—H70.9300
N1—C21.354 (2)C8—C91.373 (3)
N1—N21.3893 (19)C8—H80.9300
N1—C31.477 (2)C9—C101.362 (3)
N2—C51.285 (2)C10—C111.381 (3)
C1—C21.490 (3)C10—H100.9300
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C171.384 (3)
C1—H1C0.9600C12—C131.391 (3)
C3—C61.510 (2)C13—C141.377 (3)
C3—C41.533 (3)C13—H130.9300
C3—H30.9800C14—C151.371 (3)
C4—C51.502 (2)C14—H140.9300
C4—H4A0.9700C15—C161.362 (3)
C4—H4B0.9700C16—C171.380 (3)
C5—C121.465 (2)C16—H160.9300
C6—C111.385 (2)C17—H170.9300
C2—N1—N2122.87 (14)C8—C7—H7119.5
C2—N1—C3124.48 (15)C6—C7—H7119.5
N2—N1—C3112.62 (14)C9—C8—C7118.28 (18)
C5—N2—N1107.76 (14)C9—C8—H8120.9
C2—C1—H1A109.5C7—C8—H8120.9
C2—C1—H1B109.5F1—C9—C10118.61 (18)
H1A—C1—H1B109.5F1—C9—C8118.66 (19)
C2—C1—H1C109.5C10—C9—C8122.73 (18)
H1A—C1—H1C109.5C9—C10—C11118.23 (17)
H1B—C1—H1C109.5C9—C10—H10120.9
O1—C2—N1119.36 (17)C11—C10—H10120.9
O1—C2—C1123.17 (18)C10—C11—C6121.12 (17)
N1—C2—C1117.46 (17)C10—C11—H11119.4
N1—C3—C6112.45 (15)C6—C11—H11119.4
N1—C3—C4100.64 (13)C17—C12—C13118.28 (18)
C6—C3—C4112.75 (14)C17—C12—C5120.02 (17)
N1—C3—H3110.2C13—C12—C5121.70 (17)
C6—C3—H3110.2C14—C13—C12120.43 (19)
C4—C3—H3110.2C14—C13—H13119.8
C5—C4—C3102.19 (14)C12—C13—H13119.8
C5—C4—H4A111.3C15—C14—C13119.92 (19)
C3—C4—H4A111.3C15—C14—H14120.0
C5—C4—H4B111.3C13—C14—H14120.0
C3—C4—H4B111.3C16—C15—C14120.72 (19)
H4A—C4—H4B109.2C16—C15—Cl1119.42 (17)
N2—C5—C12121.50 (16)C14—C15—Cl1119.84 (17)
N2—C5—C4113.79 (16)C15—C16—C17119.62 (19)
C12—C5—C4124.69 (16)C15—C16—H16120.2
C11—C6—C7118.63 (17)C17—C16—H16120.2
C11—C6—C3119.71 (16)C16—C17—C12120.97 (19)
C7—C6—C3121.53 (15)C16—C17—H17119.5
C8—C7—C6120.99 (17)C12—C17—H17119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1i0.972.573.425 (2)147
Symmetry code: (i) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H14ClFN2O
Mr316.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.5425 (19), 11.3580 (14), 9.6494 (13)
β (°) 108.154 (2)
V3)1514.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.14 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7793, 2676, 2077
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.03
No. of reflections2676
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1i0.972.573.425 (2)146.60
Symmetry code: (i) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Sparking Plan of Shandong Province (grant No. 200674006017) and the National Sparking Plan Project (grant No. 2007E740083).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196–1200.  CAS Google Scholar
First citationFahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786–1792.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLombardino, G. & Ottemes, I. G. (1981). J. Med. Chem. 24, 830–834.  CrossRef CAS PubMed Web of Science Google Scholar
First citationManna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett. 12, 3629–3635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc. 40, 323–326.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds