organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

P,P-Di­phenyl-N-(1,1,2,2-tetra­phenyl-1λ5-diphosphanyl­­idene)phosphinous amide

aDepartment of Chemistry and Chemical Biology, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA
*Correspondence e-mail: rakemp@unm.edu

(Received 23 June 2008; accepted 2 July 2008; online 9 July 2008)

The title compound, C36H30NP3, a structural isomer of tris­(diphenyl­phosphino)amine, was unexpectedly isolated as the sole phospho­rus-containing product from the reaction of Mg[N(PPh2)2]2(THF)2 (THF is tetra­hydro­furan) with CO2. Its identity was confirmed by 31P NMR spectroscopy and single-crystal X-ray diffraction. The geometry at the two P(III) atoms is trigonal pyramidal, while the P(V) atom adopts a distorted tetrahedral geometry.

Related literature

For the original synthesis and spectroscopic characterization of the title compound, see: Nöth & Meinel (1967[Nöth, N. & Meinel, L. (1967). Z. Anorg. Allg. Chem. 349, 225-240.]); Meinel & Nöth (1970[Meinel, L. & Nöth, H. (1970). Z. Anorg. Allg. Chem. 373, 36-47.]). For the crystallographic characterization of the structural isomer N[P(C6H5)2]3, see: Ellermann et al. (1987[Ellermann, J., Köck, E., Zimmermann, H. & Gomm, M. (1987). Acta Cryst. C43, 1795-1798.]). For related literature, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C36H30NP3

  • Mr = 569.52

  • Monoclinic, P 21 /n

  • a = 9.3026 (13) Å

  • b = 10.8167 (15) Å

  • c = 29.750 (4) Å

  • β = 98.589 (6)°

  • V = 2960.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 228 (2) K

  • 0.57 × 0.51 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.96

  • 76797 measured reflections

  • 11496 independent reflections

  • 9167 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.05

  • 11496 reflections

  • 481 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The molecular stucture of the title compound, (I), is shown in Fig. 1. It was originally prepared by Nöth and Meinel [Nöth & Meinel (1967); and Meinel & Nöth (1970)] but its crystal structure was not determined at that time. We report herein the isolation of (I) as an unexpected product of the reaction of carbon dioxide with Mg[N(PPh2)2]2(THF)2. This compound was characterized by 31P NMR spectroscopy and single-crystal X-ray diffraction. The PN double bond measures 1.5690 (10) Å, very close to the average value of similar bonds in a Mogul (Bruno et al., 2004) search of the Cambridge structural database (mean P=N 1.573 Å). The P—N single bond of 1.6755 (11) Å is significantly shorter than those in the structural isomer N(PPh2)3 (Ellermann, et al. 1987) (mean P—N = 1.740 Å), which is not surprising when the different hybridization of nitrogen (sp2 versus sp3) is considered. It is also, however, shorter than the average P—N(sp2) bond length of 1.706 Å. The geometry at each of the two P(III) atoms is trigonal pyramidal, due to the stereochemically active lone pair on each of these atoms. The P(V) atom adopts distorted tetrahedral geometry.

Related literature top

For the original synthesis and spectroscopic characterization of the title compound, see: Nöth & Meinel (1967); Meinel & Nöth (1970). For the crystallographic characterization of the structural isomer N[P(C6H5)2]3, see: Ellermann et al. (1987). For related literature, see: Bruno et al. (2004).

Experimental top

Under an inert argon atmosphere, Mg[N(PPh2)2]2(THF)2 (0.67 g, 0.72 mmol) was dissolved in 40 ml anhydrous THF. The solution was exposed to 2 eq. of carbon dioxide at 10 psig. After 16 h, the solution was purged with argon. Colourless crystals of the title compound crystallized from the solution over the course of two weeks. 31P{1H} NMR (101.255 MHz, THF) δ 41.5 (d, 2JPP = 97 Hz, Ph2P-N), 17.8 (d of d, 2JPP = 97 Hz, 1JPP = 249 Hz, N=PPh2), -9.4 (d, 1JPP = 249 Hz, P-PPh2) p.p.m..

Refinement top

H atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing full numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms have been removed for clarity.
P,P-Diphenyl-N-(1,1,2,2-tetraphenyl-1λ5- diphosphanylidene)phosphinous amide top
Crystal data top
C36H30NP3F(000) = 1192
Mr = 569.52Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9384 reflections
a = 9.3026 (13) Åθ = 2.3–33.2°
b = 10.8167 (15) ŵ = 0.23 mm1
c = 29.750 (4) ÅT = 228 K
β = 98.589 (6)°Square, colourless
V = 2960.0 (7) Å30.58 × 0.51 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
11496 independent reflections
Radiation source: fine-focus sealed tube9167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 33.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.88, Tmax = 0.96k = 1616
76797 measured reflectionsl = 4545
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.05P]
where P = (Fo2 + 2Fc2)/3
11496 reflections(Δ/σ)max = 0.001
481 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C36H30NP3V = 2960.0 (7) Å3
Mr = 569.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3026 (13) ŵ = 0.23 mm1
b = 10.8167 (15) ÅT = 228 K
c = 29.750 (4) Å0.58 × 0.51 × 0.18 mm
β = 98.589 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
9167 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.96Rint = 0.029
76797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.06Δρmax = 0.41 e Å3
11496 reflectionsΔρmin = 0.29 e Å3
481 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.89827 (12)0.55872 (10)0.13502 (4)0.0285 (2)
P10.83490 (3)0.52397 (3)0.080793 (10)0.02539 (7)
P20.98888 (3)0.67406 (3)0.154676 (10)0.02169 (6)
P30.88674 (3)0.85071 (3)0.171889 (11)0.02562 (7)
C10.92572 (12)0.37613 (11)0.07254 (4)0.0265 (2)
C20.94010 (18)0.34039 (15)0.02865 (5)0.0398 (3)
H20.915 (2)0.396 (2)0.0046 (7)0.052 (5)*
C30.9911 (2)0.22253 (18)0.02040 (7)0.0533 (4)
H30.998 (3)0.200 (2)0.0104 (8)0.067 (7)*
C41.03047 (18)0.14200 (15)0.05566 (7)0.0494 (4)
H41.062 (2)0.061 (2)0.0493 (7)0.064 (6)*
C51.02013 (17)0.17767 (14)0.09955 (7)0.0433 (3)
H51.045 (2)0.120 (2)0.1238 (7)0.059 (6)*
C60.96912 (15)0.29430 (13)0.10817 (5)0.0344 (3)
H60.958 (2)0.3171 (19)0.1389 (7)0.053 (6)*
C110.65810 (12)0.45178 (11)0.08595 (4)0.0270 (2)
C120.60725 (15)0.43744 (13)0.12725 (5)0.0339 (3)
H120.661 (2)0.4670 (17)0.1541 (6)0.039 (5)*
C130.47230 (17)0.38278 (15)0.12874 (6)0.0444 (3)
H130.437 (2)0.380 (2)0.1578 (7)0.055 (6)*
C140.38678 (16)0.34312 (14)0.08938 (7)0.0468 (4)
H140.297 (2)0.306 (2)0.0912 (7)0.063 (6)*
C150.43625 (16)0.35656 (14)0.04816 (7)0.0439 (4)
H150.378 (2)0.332 (2)0.0199 (7)0.062 (6)*
C160.57122 (15)0.41024 (13)0.04646 (5)0.0349 (3)
H160.6072 (19)0.4179 (17)0.0181 (6)0.037 (4)*
C211.13511 (12)0.72160 (10)0.12433 (4)0.02325 (19)
C221.20846 (14)0.63055 (12)0.10377 (5)0.0318 (2)
H221.180 (2)0.5479 (18)0.1056 (6)0.045 (5)*
C231.32338 (15)0.66224 (14)0.08106 (5)0.0371 (3)
H231.372 (2)0.597 (2)0.0673 (7)0.057 (6)*
C241.36496 (15)0.78400 (14)0.07826 (5)0.0358 (3)
H241.448 (2)0.8079 (19)0.0628 (6)0.049 (5)*
C251.29177 (17)0.87515 (14)0.09808 (6)0.0420 (3)
H251.318 (2)0.957 (2)0.0961 (7)0.061 (6)*
C261.17755 (16)0.84426 (12)0.12116 (6)0.0371 (3)
H261.132 (2)0.909 (2)0.1355 (7)0.055 (6)*
C311.06971 (12)0.63888 (11)0.21231 (4)0.0256 (2)
C321.16599 (14)0.72246 (13)0.23711 (5)0.0326 (2)
H321.197 (2)0.7950 (18)0.2228 (6)0.042 (5)*
C331.21154 (17)0.70324 (17)0.28318 (5)0.0419 (3)
H331.277 (2)0.7602 (18)0.2992 (6)0.045 (5)*
C341.16275 (19)0.60144 (19)0.30440 (5)0.0488 (4)
H341.191 (2)0.587 (2)0.3358 (7)0.056 (6)*
C351.0706 (2)0.51676 (18)0.27995 (6)0.0491 (4)
H351.041 (2)0.449 (2)0.2946 (7)0.061 (6)*
C361.02326 (16)0.53572 (13)0.23390 (5)0.0362 (3)
H360.953 (2)0.4794 (18)0.2163 (6)0.047 (5)*
C410.77800 (13)0.90632 (11)0.11987 (4)0.0268 (2)
C420.78720 (15)0.86532 (13)0.07605 (5)0.0334 (3)
H420.842 (2)0.7942 (18)0.0716 (6)0.041 (5)*
C430.71842 (18)0.93088 (16)0.03862 (5)0.0420 (3)
H430.727 (2)0.9039 (19)0.0095 (7)0.052 (5)*
C440.64070 (18)1.03665 (16)0.04451 (6)0.0470 (4)
H440.597 (2)1.082 (2)0.0194 (7)0.058 (6)*
C450.6267 (2)1.07566 (16)0.08773 (7)0.0506 (4)
H450.578 (3)1.150 (2)0.0926 (8)0.070 (7)*
C460.69448 (17)1.01113 (14)0.12517 (6)0.0406 (3)
H460.684 (3)1.038 (2)0.1553 (8)0.069 (7)*
C510.75546 (14)0.78245 (12)0.20420 (4)0.0296 (2)
C520.78649 (17)0.79087 (16)0.25158 (5)0.0407 (3)
H520.878 (3)0.839 (2)0.2671 (8)0.067 (7)*
C530.6955 (2)0.73483 (19)0.27841 (6)0.0523 (4)
H530.719 (3)0.744 (2)0.3110 (8)0.073 (7)*
C540.5732 (2)0.67193 (19)0.25838 (7)0.0581 (5)
H540.512 (3)0.633 (2)0.2772 (8)0.071 (7)*
C550.5397 (2)0.66580 (18)0.21142 (7)0.0523 (4)
H550.460 (2)0.623 (2)0.1988 (7)0.058 (6)*
C560.63044 (15)0.72019 (14)0.18414 (5)0.0375 (3)
H560.608 (2)0.7168 (18)0.1505 (6)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0314 (5)0.0258 (4)0.0285 (5)0.0062 (4)0.0052 (4)0.0046 (4)
P10.02921 (14)0.02131 (13)0.02575 (14)0.00134 (10)0.00446 (11)0.00031 (10)
P20.02190 (12)0.01984 (12)0.02357 (13)0.00031 (9)0.00413 (9)0.00128 (9)
P30.02697 (13)0.02346 (13)0.02645 (14)0.00363 (10)0.00405 (11)0.00289 (10)
C10.0255 (5)0.0250 (5)0.0293 (5)0.0026 (4)0.0054 (4)0.0024 (4)
C20.0473 (8)0.0408 (7)0.0325 (7)0.0040 (6)0.0102 (6)0.0065 (6)
C30.0592 (10)0.0503 (10)0.0526 (10)0.0056 (8)0.0156 (8)0.0225 (8)
C40.0397 (7)0.0323 (7)0.0766 (12)0.0038 (6)0.0104 (8)0.0161 (7)
C50.0372 (7)0.0297 (6)0.0628 (10)0.0048 (5)0.0063 (7)0.0041 (6)
C60.0359 (6)0.0307 (6)0.0374 (7)0.0035 (5)0.0083 (5)0.0025 (5)
C110.0249 (5)0.0220 (5)0.0331 (6)0.0018 (4)0.0009 (4)0.0004 (4)
C120.0308 (6)0.0335 (6)0.0378 (7)0.0013 (5)0.0066 (5)0.0010 (5)
C130.0349 (7)0.0404 (8)0.0605 (10)0.0025 (6)0.0159 (7)0.0065 (7)
C140.0275 (6)0.0296 (6)0.0824 (13)0.0023 (5)0.0047 (7)0.0017 (7)
C150.0327 (6)0.0313 (7)0.0621 (10)0.0017 (5)0.0115 (6)0.0075 (6)
C160.0333 (6)0.0302 (6)0.0383 (7)0.0035 (5)0.0038 (5)0.0041 (5)
C210.0229 (4)0.0222 (5)0.0249 (5)0.0011 (4)0.0042 (4)0.0002 (4)
C220.0330 (6)0.0257 (5)0.0389 (7)0.0029 (4)0.0133 (5)0.0014 (5)
C230.0362 (6)0.0369 (7)0.0418 (7)0.0059 (5)0.0179 (6)0.0011 (5)
C240.0294 (6)0.0439 (7)0.0362 (7)0.0003 (5)0.0112 (5)0.0068 (5)
C250.0428 (7)0.0304 (6)0.0570 (9)0.0060 (6)0.0216 (7)0.0032 (6)
C260.0395 (6)0.0231 (5)0.0533 (8)0.0019 (5)0.0214 (6)0.0032 (5)
C310.0246 (5)0.0256 (5)0.0265 (5)0.0029 (4)0.0035 (4)0.0013 (4)
C320.0288 (5)0.0358 (6)0.0319 (6)0.0015 (5)0.0006 (5)0.0008 (5)
C330.0358 (7)0.0542 (9)0.0329 (7)0.0022 (6)0.0042 (5)0.0036 (6)
C340.0501 (9)0.0644 (11)0.0297 (7)0.0090 (8)0.0009 (6)0.0087 (7)
C350.0574 (9)0.0501 (9)0.0395 (8)0.0004 (8)0.0065 (7)0.0178 (7)
C360.0414 (7)0.0321 (6)0.0347 (7)0.0024 (5)0.0043 (5)0.0063 (5)
C410.0270 (5)0.0227 (5)0.0306 (5)0.0023 (4)0.0044 (4)0.0014 (4)
C420.0363 (6)0.0321 (6)0.0314 (6)0.0050 (5)0.0039 (5)0.0009 (5)
C430.0453 (8)0.0467 (8)0.0322 (7)0.0005 (6)0.0002 (6)0.0070 (6)
C440.0443 (8)0.0412 (8)0.0506 (9)0.0016 (6)0.0088 (7)0.0160 (7)
C450.0508 (9)0.0344 (7)0.0634 (11)0.0167 (7)0.0021 (8)0.0064 (7)
C460.0440 (7)0.0319 (7)0.0451 (8)0.0143 (6)0.0045 (6)0.0007 (6)
C510.0309 (5)0.0318 (6)0.0275 (5)0.0088 (4)0.0089 (4)0.0001 (4)
C520.0431 (7)0.0515 (9)0.0290 (6)0.0117 (6)0.0105 (6)0.0003 (6)
C530.0608 (10)0.0637 (11)0.0370 (8)0.0184 (9)0.0226 (7)0.0118 (7)
C540.0637 (11)0.0529 (10)0.0678 (12)0.0132 (8)0.0425 (10)0.0185 (9)
C550.0424 (8)0.0508 (9)0.0690 (12)0.0034 (7)0.0252 (8)0.0009 (8)
C560.0329 (6)0.0409 (7)0.0408 (7)0.0017 (5)0.0118 (5)0.0006 (6)
Geometric parameters (Å, º) top
N1—P21.5690 (10)C24—H240.99 (2)
N1—P11.6755 (11)C25—C261.3892 (19)
P1—C11.8421 (12)C25—H250.92 (2)
P1—C111.8476 (12)C26—H260.95 (2)
P2—C311.8071 (12)C31—C361.3882 (18)
P2—C211.8156 (11)C31—C321.4023 (18)
P2—P32.2273 (5)C32—C331.388 (2)
P3—C511.8196 (13)C32—H320.958 (19)
P3—C411.8200 (13)C33—C341.379 (3)
C1—C21.3873 (18)C33—H330.94 (2)
C1—C61.3935 (19)C34—C351.385 (3)
C2—C31.395 (2)C34—H340.95 (2)
C2—H20.94 (2)C35—C361.390 (2)
C3—C41.371 (3)C35—H350.92 (2)
C3—H30.96 (2)C36—H360.99 (2)
C4—C51.379 (3)C41—C421.3917 (18)
C4—H40.95 (2)C41—C461.3965 (18)
C5—C61.385 (2)C42—C431.393 (2)
C5—H50.96 (2)C42—H420.943 (19)
C6—H60.97 (2)C43—C441.378 (2)
C11—C121.3895 (18)C43—H430.93 (2)
C11—C161.3972 (18)C44—C451.378 (3)
C12—C131.394 (2)C44—H440.93 (2)
C12—H120.933 (18)C45—C461.384 (2)
C13—C141.382 (3)C45—H450.95 (2)
C13—H130.97 (2)C46—H460.96 (2)
C14—C151.380 (3)C51—C561.398 (2)
C14—H140.93 (2)C51—C521.3991 (19)
C15—C161.391 (2)C52—C531.386 (2)
C15—H150.97 (2)C52—H521.04 (2)
C16—H160.957 (17)C53—C541.382 (3)
C21—C221.3909 (16)C53—H530.97 (2)
C21—C261.3915 (17)C54—C551.387 (3)
C22—C231.3901 (18)C54—H540.96 (2)
C22—H220.94 (2)C55—C561.386 (2)
C23—C241.379 (2)C55—H550.91 (2)
C23—H230.97 (2)C56—H560.990 (19)
C24—C251.379 (2)
P2—N1—P1129.01 (7)C24—C25—C26120.13 (13)
N1—P1—C1102.74 (6)C24—C25—H25120.2 (14)
N1—P1—C11101.80 (6)C26—C25—H25119.7 (14)
C1—P1—C1194.35 (5)C25—C26—C21120.58 (12)
N1—P2—C31108.08 (6)C25—C26—H26118.3 (13)
N1—P2—C21116.14 (5)C21—C26—H26121.1 (13)
C31—P2—C21107.15 (5)C36—C31—C32119.56 (12)
N1—P2—P3122.96 (4)C36—C31—P2119.62 (10)
C31—P2—P395.39 (4)C32—C31—P2120.40 (9)
C21—P2—P3104.38 (4)C33—C32—C31119.97 (13)
C51—P3—C41104.57 (6)C33—C32—H32119.6 (11)
C51—P3—P296.68 (4)C31—C32—H32120.4 (11)
C41—P3—P2106.86 (4)C34—C33—C32119.90 (15)
C2—C1—C6118.77 (13)C34—C33—H33121.4 (12)
C2—C1—P1118.55 (10)C32—C33—H33118.7 (12)
C6—C1—P1122.45 (10)C33—C34—C35120.53 (15)
C1—C2—C3120.23 (16)C33—C34—H34121.2 (13)
C1—C2—H2119.5 (13)C35—C34—H34118.3 (13)
C3—C2—H2120.2 (13)C34—C35—C36120.01 (15)
C4—C3—C2120.34 (16)C34—C35—H35119.2 (14)
C4—C3—H3121.6 (14)C36—C35—H35120.8 (14)
C2—C3—H3118.0 (15)C31—C36—C35120.00 (14)
C3—C4—C5119.92 (15)C31—C36—H36118.7 (11)
C3—C4—H4119.2 (13)C35—C36—H36121.3 (11)
C5—C4—H4120.9 (13)C42—C41—C46118.52 (12)
C4—C5—C6120.29 (16)C42—C41—P3125.94 (9)
C4—C5—H5119.1 (13)C46—C41—P3114.86 (10)
C6—C5—H5120.5 (13)C41—C42—C43120.11 (13)
C5—C6—C1120.40 (14)C41—C42—H42120.0 (11)
C5—C6—H6119.7 (12)C43—C42—H42119.8 (11)
C1—C6—H6119.8 (12)C44—C43—C42120.54 (15)
C12—C11—C16118.50 (12)C44—C43—H43119.9 (13)
C12—C11—P1123.05 (10)C42—C43—H43119.6 (13)
C16—C11—P1118.45 (10)C45—C44—C43119.81 (14)
C11—C12—C13120.16 (14)C45—C44—H44119.6 (13)
C11—C12—H12120.7 (11)C43—C44—H44120.6 (13)
C13—C12—H12119.1 (11)C44—C45—C46120.09 (15)
C14—C13—C12120.79 (16)C44—C45—H45121.3 (14)
C14—C13—H13121.1 (12)C46—C45—H45118.4 (14)
C12—C13—H13117.9 (13)C45—C46—C41120.86 (15)
C15—C14—C13119.60 (14)C45—C46—H46120.0 (14)
C15—C14—H14121.1 (13)C41—C46—H46119.1 (14)
C13—C14—H14119.3 (13)C56—C51—C52119.65 (13)
C14—C15—C16119.93 (15)C56—C51—P3123.44 (10)
C14—C15—H15121.8 (13)C52—C51—P3116.88 (11)
C16—C15—H15118.3 (13)C53—C52—C51119.98 (17)
C15—C16—C11121.02 (15)C53—C52—H52119.4 (12)
C15—C16—H16120.3 (11)C51—C52—H52120.6 (12)
C11—C16—H16118.6 (11)C54—C53—C52120.06 (16)
C22—C21—C26118.84 (11)C54—C53—H53122.1 (15)
C22—C21—P2118.12 (9)C52—C53—H53117.8 (15)
C26—C21—P2123.03 (9)C53—C54—C55120.31 (16)
C23—C22—C21120.17 (12)C53—C54—H54119.3 (14)
C23—C22—H22120.4 (12)C55—C54—H54120.4 (14)
C21—C22—H22119.4 (12)C56—C55—C54120.30 (18)
C24—C23—C22120.53 (12)C56—C55—H55120.5 (14)
C24—C23—H23121.4 (13)C54—C55—H55119.2 (14)
C22—C23—H23118.1 (13)C55—C56—C51119.66 (16)
C23—C24—C25119.74 (12)C55—C56—H56121.4 (11)
C23—C24—H24121.5 (12)C51—C56—H56118.9 (11)
C25—C24—H24118.7 (12)

Experimental details

Crystal data
Chemical formulaC36H30NP3
Mr569.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)228
a, b, c (Å)9.3026 (13), 10.8167 (15), 29.750 (4)
β (°) 98.589 (6)
V3)2960.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.58 × 0.51 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.88, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
76797, 11496, 9167
Rint0.029
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.06
No. of reflections11496
No. of parameters481
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2008).

 

Footnotes

Concurrent address: Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Blvd SE, Albuquerque, NM 87106, USA.

Acknowledgements

The authors thank Eileen Duesler (UNM) for the X-ray data collection. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD), the National Science Foundation (grant Nos. CHE-0213165 and CHE-0443580) and the Sandia LDRD Program (grant Nos. 105932 and 113486). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract No. DE-AC04-94AL85000.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEllermann, J., Köck, E., Zimmermann, H. & Gomm, M. (1987). Acta Cryst. C43, 1795–1798.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeinel, L. & Nöth, H. (1970). Z. Anorg. Allg. Chem. 373, 36–47.  CrossRef CAS Web of Science Google Scholar
First citationNöth, N. & Meinel, L. (1967). Z. Anorg. Allg. Chem. 349, 225–240.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds