organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-(3-Bromo-5-chloro-2-hy­droxy­benzyl­­idene)isonicotinohydrazide methanol solvate

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@163.com

(Received 25 June 2008; accepted 27 June 2008; online 5 July 2008)

The title Schiff base compound, C13H9BrClN3O2·CH4O, was derived from the condensation reaction of 3-bromo-5-chloro­salicylaldehyde with isonicotinohydrazide. The dihedral angle between the benzene and pyridine rings is 5.9 (2)°. In the crystal structure, mol­ecules are linked through N—H⋯O, O—H⋯O, and O—H⋯Br inter­molecular hydrogen bonds, forming dimers and chains. There is also an intramolecular O—H⋯N hydrogen bond.

Related literature

For related structures, see: Tang, (2006[Tang, C.-B. (2006). Acta Cryst. E62, m2629-m2630.]); Tang, (2007a[Tang, C.-B. (2007a). Acta Cryst. E63, m2654.],b[Tang, C.-B. (2007b). Acta Cryst. E63, m2785-m2786.],c[Tang, C.-B. (2007c). Acta Cryst. E63, o4545.],d[Tang, C.-B. (2007d). Acta Cryst. E63, o4841.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrClN3O2·CH4O

  • Mr = 386.63

  • Triclinic, [P \overline 1]

  • a = 7.531 (1) Å

  • b = 8.735 (1) Å

  • c = 12.130 (2) Å

  • α = 80.853 (2)°

  • β = 77.781 (2)°

  • γ = 86.721 (2)°

  • V = 769.73 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 298 (2) K

  • 0.32 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.461, Tmax = 0.481 (expected range = 0.407–0.424)

  • 4529 measured reflections

  • 3254 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.01

  • 3254 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.890 (10) 2.005 (15) 2.876 (4) 166 (4)
O3—H3⋯Br1 0.82 3.05 3.641 (3) 131
O3—H3⋯O1 0.82 2.62 3.268 (4) 137
O3—H3⋯O1ii 0.82 2.55 3.114 (4) 127
O1—H1⋯N1 0.82 1.87 2.590 (3) 146
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the author has reported the structures of several Schiff base compounds (Tang, 2006; Tang, 2007a,b,c,d) and, in continuation of work in this area, reports herein the crystal structure of the title new Schiff base compound, (I).

In the title compound (Fig. 1), the dihedral angle between the benzene ring and the pyridine ring is 5.9 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, and N1—N2—C8—C9 are 0.4 (2), 2.3 (2), and 1.9 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through N–H···O, O–H···O, and O–H···Br intermolecular hydrogen bonds (Table 1), forming dimers (Fig. 2).

Related literature top

For related structures, see: Tang, (2006); Tang, (2007a,b,c,d). For reference structural data, see: Allen et al. (1987).

Experimental top

3-Bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.5 mg) and isonicotinohydrazide (0.1 mmol, 13.7 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C), 1.5Ueq(C14, O1 and O3).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds drawn as dashed lines.
2'-(3-Bromo-5-chloro-2-hydroxybenzylidene)isonicotinohydrazide methanol solvate top
Crystal data top
C13H9BrClN3O2·CH4OZ = 2
Mr = 386.63F(000) = 388
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.531 (1) ÅCell parameters from 1404 reflections
b = 8.735 (1) Åθ = 2.5–24.3°
c = 12.130 (2) ŵ = 2.86 mm1
α = 80.853 (2)°T = 298 K
β = 77.781 (2)°Block, colourless
γ = 86.721 (2)°0.32 × 0.32 × 0.30 mm
V = 769.73 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.461, Tmax = 0.481k = 1110
4529 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2117P]
where P = (Fo2 + 2Fc2)/3
3254 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C13H9BrClN3O2·CH4Oγ = 86.721 (2)°
Mr = 386.63V = 769.73 (19) Å3
Triclinic, P1Z = 2
a = 7.531 (1) ÅMo Kα radiation
b = 8.735 (1) ŵ = 2.86 mm1
c = 12.130 (2) ÅT = 298 K
α = 80.853 (2)°0.32 × 0.32 × 0.30 mm
β = 77.781 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2438 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.481Rint = 0.018
4529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.44 e Å3
3254 reflectionsΔρmin = 0.36 e Å3
205 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.13987 (5)0.60600 (4)0.27243 (3)0.04953 (14)
Cl11.14281 (14)0.21720 (11)0.04331 (7)0.0585 (3)
O10.9336 (4)0.3429 (3)0.42960 (18)0.0492 (6)
H10.88050.26940.47180.074*
O20.6850 (4)0.1108 (3)0.6960 (2)0.0613 (7)
O30.7162 (4)0.6702 (3)0.4708 (2)0.0648 (7)
H30.81290.62130.46780.097*
N10.7910 (4)0.0712 (3)0.4821 (2)0.0422 (7)
N20.7009 (4)0.0439 (3)0.5622 (2)0.0435 (7)
N30.3580 (4)0.3481 (4)0.9325 (3)0.0541 (8)
C10.9409 (4)0.1661 (4)0.2938 (3)0.0376 (7)
C20.9789 (4)0.3099 (3)0.3219 (2)0.0356 (7)
C31.0695 (4)0.4184 (3)0.2357 (3)0.0371 (7)
C41.1193 (4)0.3917 (3)0.1240 (3)0.0383 (7)
H41.17880.46700.06740.046*
C51.0792 (4)0.2518 (4)0.0983 (3)0.0388 (7)
C60.9935 (4)0.1387 (4)0.1807 (3)0.0406 (8)
H60.97030.04390.16150.049*
C70.8466 (4)0.0454 (4)0.3797 (3)0.0423 (8)
H70.82710.04990.35990.051*
C80.6508 (4)0.0112 (4)0.6708 (3)0.0392 (7)
C90.5474 (4)0.1341 (3)0.7577 (3)0.0353 (7)
C100.5137 (5)0.2802 (4)0.7393 (3)0.0432 (8)
H100.55240.30980.66750.052*
C110.4218 (5)0.3815 (4)0.8288 (3)0.0533 (9)
H110.40320.48060.81550.064*
C120.3884 (5)0.2064 (5)0.9486 (3)0.0601 (10)
H120.34330.17881.02040.072*
C130.4825 (5)0.0977 (4)0.8658 (3)0.0507 (9)
H130.50230.00050.88250.061*
C140.6322 (7)0.6375 (5)0.3861 (4)0.0809 (14)
H14A0.51140.68200.39670.121*
H14B0.62640.52720.39020.121*
H14C0.70070.68080.31270.121*
H20.689 (6)0.136 (2)0.543 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0660 (3)0.0388 (2)0.0409 (2)0.01820 (16)0.00010 (16)0.00617 (14)
Cl10.0847 (7)0.0584 (5)0.0301 (4)0.0171 (5)0.0016 (4)0.0118 (4)
O10.0672 (17)0.0464 (14)0.0289 (12)0.0191 (12)0.0035 (11)0.0019 (10)
O20.088 (2)0.0386 (13)0.0523 (15)0.0236 (13)0.0019 (13)0.0050 (11)
O30.073 (2)0.0651 (18)0.0574 (17)0.0025 (15)0.0088 (15)0.0168 (14)
N10.0448 (16)0.0384 (15)0.0373 (16)0.0112 (12)0.0042 (12)0.0104 (12)
N20.0547 (18)0.0384 (15)0.0331 (15)0.0216 (14)0.0030 (13)0.0063 (12)
N30.059 (2)0.0546 (19)0.0415 (17)0.0192 (15)0.0025 (14)0.0047 (14)
C10.0376 (18)0.0377 (17)0.0344 (17)0.0055 (14)0.0053 (14)0.0028 (13)
C20.0383 (18)0.0375 (17)0.0292 (16)0.0064 (14)0.0041 (13)0.0017 (13)
C30.0421 (19)0.0339 (16)0.0331 (16)0.0103 (14)0.0024 (14)0.0028 (13)
C40.0418 (19)0.0351 (17)0.0322 (16)0.0098 (14)0.0003 (14)0.0048 (13)
C50.0451 (19)0.0439 (18)0.0256 (15)0.0084 (15)0.0029 (14)0.0028 (13)
C60.046 (2)0.0361 (17)0.0405 (18)0.0097 (14)0.0095 (15)0.0049 (14)
C70.047 (2)0.0376 (17)0.0394 (19)0.0157 (15)0.0047 (15)0.0022 (14)
C80.0424 (19)0.0341 (17)0.0374 (18)0.0089 (14)0.0042 (14)0.0037 (14)
C90.0334 (17)0.0346 (16)0.0349 (17)0.0086 (13)0.0030 (13)0.0014 (13)
C100.052 (2)0.0387 (18)0.0335 (17)0.0125 (15)0.0030 (15)0.0025 (14)
C110.062 (2)0.0433 (19)0.049 (2)0.0178 (18)0.0004 (18)0.0006 (16)
C120.068 (3)0.072 (3)0.035 (2)0.022 (2)0.0059 (18)0.0078 (18)
C130.061 (2)0.0446 (19)0.043 (2)0.0167 (17)0.0042 (17)0.0090 (16)
C140.095 (4)0.077 (3)0.078 (3)0.012 (3)0.025 (3)0.019 (3)
Geometric parameters (Å, º) top
Br1—C31.897 (3)C4—C51.373 (4)
Cl1—C51.753 (3)C4—H40.9300
O1—C21.351 (3)C5—C61.370 (4)
O1—H10.8200C6—H60.9300
O2—C81.209 (4)C7—H70.9300
O3—C141.388 (5)C8—C91.503 (4)
O3—H30.8200C9—C101.377 (4)
N1—C71.276 (4)C9—C131.380 (4)
N1—N21.380 (3)C10—C111.374 (4)
N2—C81.363 (4)C10—H100.9300
N2—H20.890 (10)C11—H110.9300
N3—C111.320 (5)C12—C131.373 (5)
N3—C121.323 (5)C12—H120.9300
C1—C61.400 (4)C13—H130.9300
C1—C21.412 (4)C14—H14A0.9600
C1—C71.457 (4)C14—H14B0.9600
C2—C31.383 (4)C14—H14C0.9600
C3—C41.380 (4)
C2—O1—H1109.5N1—C7—H7120.2
C14—O3—H3109.5C1—C7—H7120.2
C7—N1—N2118.9 (3)O2—C8—N2122.1 (3)
C8—N2—N1116.0 (3)O2—C8—C9121.6 (3)
C8—N2—H2124 (3)N2—C8—C9116.3 (3)
N1—N2—H2120 (3)C10—C9—C13117.2 (3)
C11—N3—C12115.9 (3)C10—C9—C8125.7 (3)
C6—C1—C2119.4 (3)C13—C9—C8117.0 (3)
C6—C1—C7118.9 (3)C11—C10—C9118.7 (3)
C2—C1—C7121.6 (3)C11—C10—H10120.6
O1—C2—C3119.5 (3)C9—C10—H10120.6
O1—C2—C1122.3 (3)N3—C11—C10124.7 (3)
C3—C2—C1118.2 (3)N3—C11—H11117.6
C4—C3—C2122.3 (3)C10—C11—H11117.6
C4—C3—Br1118.4 (2)N3—C12—C13124.1 (3)
C2—C3—Br1119.3 (2)N3—C12—H12118.0
C5—C4—C3118.6 (3)C13—C12—H12118.0
C5—C4—H4120.7C12—C13—C9119.3 (3)
C3—C4—H4120.7C12—C13—H13120.4
C6—C5—C4121.6 (3)C9—C13—H13120.4
C6—C5—Cl1119.6 (2)O3—C14—H14A109.5
C4—C5—Cl1118.8 (2)O3—C14—H14B109.5
C5—C6—C1119.9 (3)H14A—C14—H14B109.5
C5—C6—H6120.1O3—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
N1—C7—C1119.6 (3)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (1)2.01 (2)2.876 (4)166 (4)
O3—H3···Br10.823.053.641 (3)131
O3—H3···O10.822.623.268 (4)137
O3—H3···O1ii0.822.553.114 (4)127
O1—H1···N10.821.872.590 (3)146
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9BrClN3O2·CH4O
Mr386.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.531 (1), 8.735 (1), 12.130 (2)
α, β, γ (°)80.853 (2), 77.781 (2), 86.721 (2)
V3)769.73 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.32 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.461, 0.481
No. of measured, independent and
observed [I > 2σ(I)] reflections
4529, 3254, 2438
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.01
No. of reflections3254
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.890 (10)2.005 (15)2.876 (4)166 (4)
O3—H3···Br10.823.053.641 (3)131.3
O3—H3···O10.822.623.268 (4)136.6
O3—H3···O1ii0.822.553.114 (4)127.4
O1—H1···N10.821.872.590 (3)146.0
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2006). Acta Cryst. E62, m2629–m2630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007a). Acta Cryst. E63, m2654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007b). Acta Cryst. E63, m2785–m2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007c). Acta Cryst. E63, o4545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007d). Acta Cryst. E63, o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds