organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(3,5-di­bromo-2-hy­droxy­benzyl­­idene)benzohydrazide methanol solvate

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@163.com

(Received 25 June 2008; accepted 27 June 2008; online 5 July 2008)

The title Schiff base compound, C14H9Br2ClN2O2·CH4O, was derived from the condensation reaction of 3,5-dibromo­salicylaldehyde with 2-chloro­benzohydrazide. The dihedral angle between the two benzene rings is 48.2 (2)°. In the crystal structure, mol­ecules are linked through O—H⋯O and N—H⋯O inter­molecular hydrogen bonds, forming layers parallel to the bc plane. There is also an O—H⋯N intramolecular hydrogen bond.

Related literature

For related structures, see: Tang (2006[Tang, C.-B. (2006). Acta Cryst. E62, m2629-m2630.]); Tang, (2007a[Tang, C.-B. (2007a). Acta Cryst. E63, m2654.],b[Tang, C.-B. (2007b). Acta Cryst. E63, m2785-m2786.],c[Tang, C.-B. (2007c). Acta Cryst. E63, o4545.],d[Tang, C.-B. (2007d). Acta Cryst. E63, o4841.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br2ClN2O2·CH4O

  • Mr = 464.54

  • Monoclinic, P 21 /c

  • a = 11.156 (4) Å

  • b = 9.696 (3) Å

  • c = 18.536 (3) Å

  • β = 120.356 (8)°

  • V = 1730.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.402, Tmax = 0.444 (expected range = 0.343–0.379)

  • 9035 measured reflections

  • 3627 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.160

  • S = 0.92

  • 3627 reflections

  • 215 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 2.05 2.697 (9) 136
N2—H2⋯O3 0.89 (7) 1.946 (17) 2.840 (7) 173 (8)
O1—H1⋯N1 0.82 1.91 2.590 (6) 140
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the author has reported the structures of several Schiff base compounds (Tang, 2006;Tang, 2007a,b,c,d) and, in continuation of work in this area, reports herein the structure of the title compound, (I), a new Schiff base compound.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 48.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, and N1—N2—C8—C9 are 0.1 (2), 4.8 (2), and 4.3 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through O–H···O intermolecular hydrogen bonds (Table 1), forming layers parallel to the bc plane (Fig. 2).

Related literature top

For related structures, see: Tang (2006); Tang, (2007a,b,c,d). For reference structural data, see: Allen et al. (1987).

Experimental top

3,5-Dibromosalicylaldehyde (0.1 mmol, 28.0 mg) and 2-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colorless solution. Colourless block-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C), 1.5Ueq(C15, O1 and O3).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds drawn as dashed lines.
2-Chloro-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide methanol solvate top
Crystal data top
C14H9Br2ClN2O2·CH4OF(000) = 912
Mr = 464.54Dx = 1.783 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2286 reflections
a = 11.156 (4) Åθ = 2.4–24.5°
b = 9.696 (3) ŵ = 4.85 mm1
c = 18.536 (3) ÅT = 298 K
β = 120.356 (8)°Block, colourless
V = 1730.1 (9) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3627 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.402, Tmax = 0.444k = 1210
9035 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0746P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3627 reflectionsΔρmax = 0.81 e Å3
215 parametersΔρmin = 0.71 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0119 (12)
Crystal data top
C14H9Br2ClN2O2·CH4OV = 1730.1 (9) Å3
Mr = 464.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.156 (4) ŵ = 4.85 mm1
b = 9.696 (3) ÅT = 298 K
c = 18.536 (3) Å0.23 × 0.20 × 0.20 mm
β = 120.356 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3627 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1895 reflections with I > 2σ(I)
Tmin = 0.402, Tmax = 0.444Rint = 0.101
9035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.81 e Å3
3627 reflectionsΔρmin = 0.71 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36755 (9)1.09036 (8)0.95218 (6)0.0603 (4)
Br20.19725 (9)0.54059 (7)1.04896 (6)0.0557 (3)
Cl10.3094 (2)1.28217 (17)0.81645 (14)0.0580 (6)
O10.1788 (5)1.0664 (4)0.8816 (3)0.0443 (14)
H10.14291.05320.85310.067*
O20.0171 (5)1.1554 (5)0.7617 (4)0.0543 (15)
O30.2494 (6)0.7016 (5)0.8572 (4)0.0560 (16)
H3A0.19240.65110.82030.084*
N10.0034 (6)0.9492 (5)0.8546 (4)0.0373 (16)
N20.0939 (6)0.9488 (5)0.8251 (4)0.0388 (16)
C10.0946 (7)0.8351 (6)0.9261 (4)0.0325 (16)
C20.1773 (7)0.9478 (5)0.9204 (4)0.0307 (16)
C30.2590 (7)0.9362 (6)0.9571 (5)0.0374 (18)
C40.2624 (7)0.8177 (6)0.9961 (5)0.0400 (19)
H40.31820.81241.02000.048*
C50.1835 (7)0.7073 (6)0.9999 (5)0.0386 (18)
C60.0988 (7)0.7157 (6)0.9662 (5)0.0389 (19)
H60.04380.64070.97020.047*
C70.0008 (7)0.8415 (6)0.8926 (5)0.0415 (19)
H70.05830.76720.89930.050*
C80.0941 (7)1.0545 (6)0.7797 (5)0.0353 (18)
C90.1906 (7)1.0373 (6)0.7455 (4)0.0357 (17)
C100.2917 (8)1.1341 (6)0.7595 (5)0.0415 (19)
C110.3785 (8)1.1138 (7)0.7278 (5)0.049 (2)
H110.44491.17990.73660.058*
C120.3676 (9)0.9973 (8)0.6836 (6)0.059 (3)
H120.42650.98420.66240.071*
C130.2705 (9)0.9004 (7)0.6706 (6)0.056 (2)
H130.26450.82050.64120.068*
C140.1819 (8)0.9187 (7)0.7002 (5)0.048 (2)
H140.11520.85210.69010.057*
C150.3807 (10)0.6749 (9)0.8694 (7)0.092 (4)
H15A0.43770.75550.89160.138*
H15B0.37300.65080.81700.138*
H15C0.42210.59980.90800.138*
H20.149 (7)0.875 (5)0.839 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0653 (7)0.0618 (5)0.0723 (7)0.0269 (4)0.0484 (6)0.0132 (4)
Br20.0785 (8)0.0421 (4)0.0704 (7)0.0006 (4)0.0551 (6)0.0114 (4)
Cl10.0664 (17)0.0464 (10)0.0727 (16)0.0114 (9)0.0436 (15)0.0142 (10)
O10.055 (4)0.040 (2)0.055 (4)0.009 (2)0.040 (3)0.008 (2)
O20.050 (4)0.047 (3)0.080 (4)0.019 (3)0.044 (4)0.025 (3)
O30.044 (4)0.045 (3)0.080 (5)0.002 (2)0.033 (4)0.002 (3)
N10.048 (4)0.030 (3)0.050 (4)0.008 (2)0.037 (4)0.005 (3)
N20.047 (4)0.030 (3)0.057 (4)0.007 (2)0.039 (4)0.011 (3)
C10.028 (5)0.034 (3)0.034 (4)0.005 (3)0.015 (4)0.007 (3)
C20.030 (5)0.027 (3)0.030 (4)0.001 (3)0.012 (4)0.004 (3)
C30.036 (5)0.037 (3)0.042 (5)0.006 (3)0.021 (4)0.004 (3)
C40.038 (5)0.051 (4)0.044 (5)0.000 (4)0.030 (5)0.004 (4)
C50.049 (5)0.035 (3)0.041 (5)0.006 (3)0.030 (5)0.004 (3)
C60.038 (5)0.031 (3)0.059 (6)0.005 (3)0.032 (5)0.001 (3)
C70.049 (5)0.029 (3)0.059 (6)0.002 (3)0.036 (5)0.001 (3)
C80.039 (5)0.033 (3)0.042 (5)0.004 (3)0.026 (4)0.007 (3)
C90.034 (5)0.038 (3)0.039 (5)0.003 (3)0.022 (4)0.010 (3)
C100.051 (6)0.041 (3)0.043 (5)0.003 (3)0.032 (5)0.003 (3)
C110.046 (6)0.050 (4)0.064 (6)0.009 (3)0.039 (5)0.003 (4)
C120.065 (6)0.071 (5)0.074 (7)0.004 (4)0.059 (6)0.004 (5)
C130.077 (7)0.052 (4)0.063 (6)0.005 (4)0.052 (6)0.004 (4)
C140.061 (6)0.040 (4)0.052 (6)0.003 (3)0.036 (5)0.003 (4)
C150.069 (8)0.083 (6)0.148 (11)0.012 (6)0.072 (9)0.010 (7)
Geometric parameters (Å, º) top
Br1—C31.897 (6)C4—H40.9300
Br2—C51.899 (6)C5—C61.372 (8)
Cl1—C101.733 (6)C6—H60.9300
O1—C21.352 (6)C7—H70.9300
O1—H10.8200C8—C91.509 (8)
O2—C81.232 (7)C9—C101.387 (9)
O3—C151.389 (9)C9—C141.399 (9)
O3—H3A0.8200C10—C111.377 (8)
N1—C71.269 (7)C11—C121.365 (10)
N1—N21.369 (6)C11—H110.9300
N2—C81.327 (7)C12—C131.361 (10)
N2—H20.89 (7)C12—H120.9300
C1—C61.390 (8)C13—C141.362 (9)
C1—C21.400 (8)C13—H130.9300
C1—C71.480 (8)C14—H140.9300
C2—C31.389 (8)C15—H15A0.9600
C3—C41.368 (8)C15—H15B0.9600
C4—C51.366 (8)C15—H15C0.9600
C2—O1—H1109.5O2—C8—N2124.1 (5)
C15—O3—H3A109.5O2—C8—C9121.5 (6)
C7—N1—N2116.6 (5)N2—C8—C9114.3 (5)
C8—N2—N1119.3 (5)C10—C9—C14118.1 (5)
C8—N2—H2125 (5)C10—C9—C8122.2 (6)
N1—N2—H2115 (5)C14—C9—C8119.7 (5)
C6—C1—C2119.4 (5)C11—C10—C9120.3 (6)
C6—C1—C7119.0 (5)C11—C10—Cl1119.3 (5)
C2—C1—C7121.5 (5)C9—C10—Cl1120.4 (4)
O1—C2—C3119.6 (5)C12—C11—C10120.4 (6)
O1—C2—C1122.3 (5)C12—C11—H11119.8
C3—C2—C1118.1 (5)C10—C11—H11119.8
C4—C3—C2121.8 (5)C13—C12—C11120.0 (6)
C4—C3—Br1119.9 (4)C13—C12—H12120.0
C2—C3—Br1118.3 (5)C11—C12—H12120.0
C5—C4—C3119.7 (5)C12—C13—C14120.9 (7)
C5—C4—H4120.1C12—C13—H13119.6
C3—C4—H4120.1C14—C13—H13119.6
C4—C5—C6120.3 (5)C13—C14—C9120.3 (7)
C4—C5—Br2119.0 (4)C13—C14—H14119.8
C6—C5—Br2120.6 (5)C9—C14—H14119.8
C5—C6—C1120.7 (5)O3—C15—H15A109.5
C5—C6—H6119.7O3—C15—H15B109.5
C1—C6—H6119.7H15A—C15—H15B109.5
N1—C7—C1119.4 (5)O3—C15—H15C109.5
N1—C7—H7120.3H15A—C15—H15C109.5
C1—C7—H7120.3H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.052.697 (9)136
N2—H2···O30.89 (7)1.95 (2)2.840 (7)173 (8)
O1—H1···N10.821.912.590 (6)140
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9Br2ClN2O2·CH4O
Mr464.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.156 (4), 9.696 (3), 18.536 (3)
β (°) 120.356 (8)
V3)1730.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.402, 0.444
No. of measured, independent and
observed [I > 2σ(I)] reflections
9035, 3627, 1895
Rint0.101
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.160, 0.92
No. of reflections3627
No. of parameters215
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.71

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.822.052.697 (9)136.1
N2—H2···O30.89 (7)1.946 (17)2.840 (7)173 (8)
O1—H1···N10.821.912.590 (6)140.1
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2006). Acta Cryst. E62, m2629–m2630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007a). Acta Cryst. E63, m2654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007b). Acta Cryst. E63, m2785–m2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007c). Acta Cryst. E63, o4545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007d). Acta Cryst. E63, o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds