organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1374-o1375

N,N′-Bis(4-bromo­benzyl­­idene)ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 26 June 2008; accepted 27 June 2008; online 5 July 2008)

The mol­ecule of the title Schiff base compound, C16H14Br2N2, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine C=N bond. The imino group is coplanar with the aromatic ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions and Br⋯Br [3.6307 (4) Å] short contacts.

Related literature

For the values of bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Habibi et al. (2007[Habibi, M. H., Montazerzohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x47-x48.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Harkema & van Hummel (2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369-3375.]); Kia, Mirkhani, Kalman & Deak (2007[Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117-1716.]); Amirnasr et al. (2002[Amirnasr, M., Meghdadi, S., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807-2816.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Br2N2

  • Mr = 394.11

  • Monoclinic, P 21 /c

  • a = 13.8417 (5) Å

  • b = 7.4796 (3) Å

  • c = 7.1531 (3) Å

  • β = 95.692 (1)°

  • V = 736.91 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.24 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.189, Tmax = 0.853

  • 10096 measured reflections

  • 2148 independent reflections

  • 1773 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.06

  • 2148 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1 0.93 2.99 3.7143 (19) 136
Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Kia et al., 2007a,b; Habibi et al., 2007; Amirnasr et al., 2002; Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have been characterized. As an extension of our work (Fun et al., 2008a,b) on the structural characterization of Schiff base compounds, the title compound (I), (Fig. 1), is reported here.

The molecule of the title compound, (I), (Fig. 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine CN bond. The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit of the compound is composed of one-half of the molecule. The two planar units are parallel but extend in opposite directions from the methylene bridge. The interesting feature of the structure is Br···Bri [symmetry code: (i) 2 - x, 1 - y, 1 - z] interactions with distance 3.6307 (4) Å. In the crystal structure, molecules (Fig. 2) are arranged into columns along the c axis by C—H···π interactions (Table 1).

Related literature top

For the values of bond lengths, see Allen et al. (1987). For related structures see, for example: Fun et al. (2008a,b); Habibi et al. (2007); Calligaris & Randaccio, (1987). For information on Schiff base complexes and their applications, see, for example, Kia et al. (2007a,b); Amirnasr et al. (2002); Pal et al. (2005); Hou et al. (2001); Ren et al. (2002). For related literature, see: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Kia, Mirkhani, Harkema & van Hummel (2007); Kia, Mirkhani, Kalman & Deak (2007). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

The synthetic method has been described earlier (Fun et al., 2008a,b). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms bound to C8 were located from the difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically with C—H = 0.93 Å and refined in riding mode with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for a: -x, 0.5 + y, 0.5 - z].
[Figure 2] Fig. 2. The crystal packing, showing column arrangement of the molecules along the c-axis. The Br···Br contacts are shown as dashed lines.
N,N'-Bis(4-bromobenzylidene)ethane-1,2-diamine top
Crystal data top
C16H14Br2N2F(000) = 388
Mr = 394.11Dx = 1.776 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3320 reflections
a = 13.8417 (5) Åθ = 3.1–31.6°
b = 7.4796 (3) ŵ = 5.49 mm1
c = 7.1531 (3) ÅT = 100 K
β = 95.692 (1)°Block, colourless
V = 736.91 (5) Å30.45 × 0.24 × 0.03 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2148 independent reflections
Radiation source: fine-focus sealed tube1773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker 2005)
h = 1919
Tmin = 0.189, Tmax = 0.853k = 109
10096 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.1298P]
where P = (Fo2 + 2Fc2)/3
2148 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C16H14Br2N2V = 736.91 (5) Å3
Mr = 394.11Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.8417 (5) ŵ = 5.49 mm1
b = 7.4796 (3) ÅT = 100 K
c = 7.1531 (3) Å0.45 × 0.24 × 0.03 mm
β = 95.692 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2005)
1773 reflections with I > 2σ(I)
Tmin = 0.189, Tmax = 0.853Rint = 0.048
10096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.73 e Å3
2148 reflectionsΔρmin = 0.45 e Å3
99 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.901280 (16)0.57354 (3)0.36941 (3)0.02279 (8)
N10.57142 (14)0.4729 (2)0.2936 (2)0.0199 (4)
C10.67242 (16)0.5432 (3)0.0377 (3)0.0185 (4)
H1A0.60680.57270.04900.022*
C20.72773 (16)0.5762 (2)0.1849 (3)0.0187 (4)
H2A0.70010.63160.29370.022*
C30.82508 (15)0.5259 (3)0.1685 (3)0.0172 (4)
C40.86807 (16)0.4432 (2)0.0085 (3)0.0183 (4)
H4A0.93270.40730.00050.022*
C50.81247 (16)0.4149 (2)0.1402 (3)0.0179 (4)
H5A0.84080.36150.24960.021*
C60.71515 (16)0.4652 (2)0.1284 (3)0.0169 (4)
C70.65967 (17)0.4292 (2)0.2901 (3)0.0185 (4)
H7A0.69090.37170.39440.022*
C80.52516 (17)0.4197 (3)0.4604 (3)0.0202 (4)
H8A0.4726 (17)0.323 (3)0.418 (3)0.025 (6)*
H8B0.5700 (17)0.359 (3)0.553 (3)0.014 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02663 (14)0.02485 (12)0.01759 (12)0.00239 (9)0.00569 (9)0.00236 (8)
N10.0245 (9)0.0218 (8)0.0134 (8)0.0011 (7)0.0025 (7)0.0012 (6)
C10.0196 (10)0.0176 (10)0.0178 (10)0.0016 (7)0.0005 (8)0.0006 (7)
C20.0250 (11)0.0172 (9)0.0131 (9)0.0030 (8)0.0015 (8)0.0005 (7)
C30.0231 (11)0.0143 (8)0.0143 (9)0.0018 (8)0.0024 (8)0.0009 (7)
C40.0193 (10)0.0164 (9)0.0188 (9)0.0014 (7)0.0006 (8)0.0018 (7)
C50.0239 (11)0.0148 (9)0.0144 (9)0.0008 (8)0.0008 (8)0.0002 (7)
C60.0249 (11)0.0122 (8)0.0135 (9)0.0011 (7)0.0013 (8)0.0026 (6)
C70.0265 (11)0.0155 (9)0.0132 (9)0.0012 (8)0.0002 (8)0.0010 (7)
C80.0231 (11)0.0215 (10)0.0167 (10)0.0002 (8)0.0050 (8)0.0021 (8)
Geometric parameters (Å, º) top
Br1—C31.8987 (19)C4—C51.389 (3)
N1—C71.267 (3)C4—H4A0.9300
N1—C81.464 (3)C5—C61.393 (3)
C1—C21.384 (3)C5—H5A0.9300
C1—C61.400 (3)C6—C71.475 (3)
C1—H1A0.9300C7—H7A0.9300
C2—C31.393 (3)C8—C8i1.526 (4)
C2—H2A0.9300C8—H8A1.05 (2)
C3—C41.383 (3)C8—H8B0.97 (2)
C7—N1—C8116.51 (18)C4—C5—H5A119.4
C2—C1—C6120.0 (2)C6—C5—H5A119.4
C2—C1—H1A120.0C5—C6—C1119.23 (18)
C6—C1—H1A120.0C5—C6—C7118.59 (18)
C1—C2—C3119.43 (19)C1—C6—C7122.15 (19)
C1—C2—H2A120.3N1—C7—C6123.10 (19)
C3—C2—H2A120.3N1—C7—H7A118.5
C4—C3—C2121.58 (18)C6—C7—H7A118.5
C4—C3—Br1119.00 (15)N1—C8—C8i109.9 (2)
C2—C3—Br1119.42 (15)N1—C8—H8A107.5 (13)
C3—C4—C5118.43 (19)C8i—C8—H8A108.8 (13)
C3—C4—H4A120.8N1—C8—H8B112.2 (12)
C5—C4—H4A120.8C8i—C8—H8B113.6 (13)
C4—C5—C6121.22 (19)H8A—C8—H8B104.4 (18)
C6—C1—C2—C32.1 (3)C4—C5—C6—C7179.13 (17)
C1—C2—C3—C40.1 (3)C2—C1—C6—C52.6 (3)
C1—C2—C3—Br1179.35 (14)C2—C1—C6—C7179.26 (17)
C2—C3—C4—C51.7 (3)C8—N1—C7—C6176.96 (18)
Br1—C3—C4—C5177.70 (14)C5—C6—C7—N1178.68 (18)
C3—C4—C5—C61.2 (3)C1—C6—C7—N13.2 (3)
C4—C5—C6—C11.0 (3)C7—N1—C8—C8i129.5 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg10.932.993.7143 (19)136

Experimental details

Crystal data
Chemical formulaC16H14Br2N2
Mr394.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.8417 (5), 7.4796 (3), 7.1531 (3)
β (°) 95.692 (1)
V3)736.91 (5)
Z2
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.45 × 0.24 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2005)
Tmin, Tmax0.189, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
10096, 2148, 1773
Rint0.048
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.06
No. of reflections2148
No. of parameters99
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg10.932.993.7143 (19)136
 

Footnotes

Additional correspondence author: e-mail: mirkhani@sci.ui.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and ARV thank the University of Isfahan for financial support. VM and ARV thank Dr Reza Kia for the manuscript preparation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAmirnasr, M., Meghdadi, S., Schenk, K. J. & Dehghanpour, S. (2002). Helv. Chim. Acta, 85, 2807–2816.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Montazerzohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. X-Ray Struct. Anal. Online, 23, x47–x48.  CSD CrossRef CAS Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1117–1716.  Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1374-o1375
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds