organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3-bromo­benzyl­­idene)ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2008; accepted 8 July 2008; online 12 July 2008)

The mol­ecule of the title Schiff base compound, C16H14Br2N2, lies across a crystallographic inversion centre. The C=N bond adopts a trans configuration. The imino group is coplanar with the benzene ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. The inter­esting feature of the structure is the weak Br⋯Br inter­action [3.7501 (2) Å] linking the mol­ecules into chains along the c axis. These chains are stacked along the b axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Mirkhani et al. (2008[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008). Acta Cryst. E64, o1374-o1375.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Harkema & van Hummel (2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369-3375.]); Kia, Mirkhani, Kalman & Deak (2007[Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1711-1716.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Br2N2

  • Mr = 394.11

  • Monoclinic, P 21 /c

  • a = 6.2578 (1) Å

  • b = 4.6549 (1) Å

  • c = 25.3272 (5) Å

  • β = 93.592 (1)°

  • V = 736.32 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.50 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.125, Tmax = 0.393

  • 24876 measured reflections

  • 3822 independent reflections

  • 2975 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.07

  • 3822 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. Schiff bases have been used widely as ligands in the formation of transition metal complexes. Many such complexes have been structurally characterized, but only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). There has been growing interest in Schiff base ligands, mainly because of their wide application in the field of biochemistry, synthesis, and catalysis (Kia et al., 2007a,b; Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). As an extension of our work (Fun et al., 2008a,b,c) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The molecule of the title compound, (I), (Fig. 1), lies across a crystallographic inversion centre. The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit is composed of one-half of the molecule. The CN bond adopts a trans configuration. The imino group is coplanar with the benzene ring. Within the molecule, the planar units are parallel, but extend in opposite directions from the methylene bridge.The interesting feature of the crystal structure is the weak Br···Br [symmetry code: 1 - x,-1/2 + y, 1/2 - z] interactions with distance 3.7501 (2) Å linking the molecules into chains along the c axis. These chains are stacked along the b axis (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani, Kia & Vartooni (2008); Calligaris & Randaccio, (1987). For information on Schiff base complexes and their applications, see, for example: Kia, Mirkhani, Harkema & van Hummel (2007); Kia, Mirkhani, Kalman & Deak (2007); Pal et al. (2005); Hou et al. (2001); Ren et al. (2002).

Experimental top

The synthetic method has been described earlier (Fun et al., 2008a,b,c). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the H atoms were located from the difference Fourier map and freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for A: -x, 0.5 + y, 0.5 - z].
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing chains along the c axis and stacking of these chains along the b-axis. The Br···Br contacts are shown as dashed lines.
N,N'-Bis(3-bromobenzylidene)ethane-1,2-diamine top
Crystal data top
C16H14Br2N2F(000) = 388
Mr = 394.11Dx = 1.778 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8650 reflections
a = 6.2578 (1) Åθ = 3.2–38.3°
b = 4.6549 (1) ŵ = 5.50 mm1
c = 25.3272 (5) ÅT = 100 K
β = 93.592 (1)°Block, colourless
V = 736.32 (2) Å30.57 × 0.22 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube2975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 37.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.125, Tmax = 0.393k = 77
24876 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.509P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C16H14Br2N2V = 736.32 (2) Å3
Mr = 394.11Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.2578 (1) ŵ = 5.50 mm1
b = 4.6549 (1) ÅT = 100 K
c = 25.3272 (5) Å0.57 × 0.22 × 0.17 mm
β = 93.592 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2975 reflections with I > 2σ(I)
Tmin = 0.125, Tmax = 0.393Rint = 0.033
24876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.69 e Å3
3822 reflectionsΔρmin = 0.62 e Å3
119 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30202 (2)0.03394 (3)0.278341 (6)0.02085 (4)
N10.35517 (18)0.8207 (3)0.44274 (5)0.0165 (2)
C10.2106 (2)0.3996 (3)0.36391 (5)0.0158 (2)
C20.1288 (2)0.1862 (3)0.33044 (5)0.0165 (2)
C30.0766 (2)0.0762 (3)0.33433 (6)0.0188 (3)
C40.2013 (2)0.1822 (3)0.37319 (6)0.0194 (3)
C50.1226 (2)0.3970 (3)0.40730 (6)0.0181 (2)
C60.0838 (2)0.5062 (3)0.40303 (5)0.0158 (2)
C70.1634 (2)0.7313 (3)0.43991 (6)0.0162 (2)
C80.4077 (2)1.0477 (3)0.48093 (6)0.0171 (2)
H10.348 (3)0.476 (4)0.3617 (9)0.021 (5)*
H30.128 (3)0.067 (5)0.3113 (9)0.026 (6)*
H40.344 (3)0.115 (5)0.3752 (8)0.025 (5)*
H50.207 (4)0.474 (5)0.4344 (10)0.030 (6)*
H70.064 (3)0.805 (5)0.4623 (8)0.019 (5)*
H8A0.448 (3)1.212 (5)0.4612 (8)0.024 (5)*
H8B0.283 (3)1.109 (4)0.5004 (7)0.014 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02520 (7)0.02173 (8)0.01584 (6)0.00015 (5)0.00296 (4)0.00294 (6)
N10.0157 (5)0.0168 (6)0.0168 (5)0.0003 (4)0.0000 (4)0.0027 (4)
C10.0152 (5)0.0160 (6)0.0160 (5)0.0002 (4)0.0002 (4)0.0008 (5)
C20.0188 (5)0.0167 (6)0.0137 (5)0.0010 (4)0.0007 (4)0.0002 (4)
C30.0206 (6)0.0168 (7)0.0183 (6)0.0013 (5)0.0037 (4)0.0018 (5)
C40.0153 (5)0.0196 (7)0.0232 (7)0.0019 (4)0.0014 (5)0.0012 (5)
C50.0154 (5)0.0184 (7)0.0205 (6)0.0008 (4)0.0012 (4)0.0019 (5)
C60.0151 (5)0.0147 (6)0.0173 (5)0.0000 (4)0.0003 (4)0.0010 (4)
C70.0154 (5)0.0162 (6)0.0170 (6)0.0007 (4)0.0001 (4)0.0015 (5)
C80.0160 (5)0.0170 (6)0.0179 (6)0.0001 (4)0.0018 (4)0.0030 (5)
Geometric parameters (Å, º) top
Br1—C21.8967 (14)C4—C51.391 (2)
N1—C71.2676 (17)C4—H40.95 (2)
N1—C81.4564 (19)C5—C61.3985 (19)
C1—C21.383 (2)C5—H50.96 (2)
C1—C61.399 (2)C6—C71.470 (2)
C1—H10.93 (2)C7—H70.93 (2)
C2—C31.393 (2)C8—C8i1.525 (3)
C3—C41.385 (2)C8—H8A0.96 (2)
C3—H30.93 (2)C8—H8B0.991 (19)
C7—N1—C8116.70 (12)C4—C5—H5121.6 (14)
C2—C1—C6118.96 (12)C6—C5—H5118.0 (14)
C2—C1—H1122.9 (13)C5—C6—C1119.58 (13)
C6—C1—H1118.1 (13)C5—C6—C7119.22 (13)
C1—C2—C3121.90 (13)C1—C6—C7121.20 (12)
C1—C2—Br1119.28 (10)N1—C7—C6123.50 (13)
C3—C2—Br1118.81 (11)N1—C7—H7120.7 (12)
C4—C3—C2118.88 (13)C6—C7—H7115.8 (12)
C4—C3—H3121.0 (14)N1—C8—C8i109.87 (15)
C2—C3—H3120.1 (13)N1—C8—H8A106.8 (12)
C3—C4—C5120.27 (13)C8i—C8—H8A110.5 (12)
C3—C4—H4119.5 (13)N1—C8—H8B112.9 (11)
C5—C4—H4120.1 (13)C8i—C8—H8B110.9 (11)
C4—C5—C6120.41 (14)H8A—C8—H8B105.7 (17)
C6—C1—C2—C30.5 (2)C4—C5—C6—C7179.45 (14)
C6—C1—C2—Br1178.55 (10)C2—C1—C6—C50.4 (2)
C1—C2—C3—C40.6 (2)C2—C1—C6—C7179.52 (13)
Br1—C2—C3—C4178.42 (11)C8—N1—C7—C6179.20 (13)
C2—C3—C4—C50.7 (2)C5—C6—C7—N1172.14 (14)
C3—C4—C5—C60.6 (2)C1—C6—C7—N17.8 (2)
C4—C5—C6—C10.5 (2)C7—N1—C8—C8i123.51 (16)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H14Br2N2
Mr394.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.2578 (1), 4.6549 (1), 25.3272 (5)
β (°) 93.592 (1)
V3)736.32 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.50
Crystal size (mm)0.57 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.125, 0.393
No. of measured, independent and
observed [I > 2σ(I)] reflections
24876, 3822, 2975
Rint0.033
(sin θ/λ)max1)0.856
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.07
No. of reflections3822
No. of parameters119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.62

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Footnotes

Additional correspondence author, e-mail: mirkhani@sci.ui.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and ARV thank the University of Isfahan for financial support and Dr Reza Kia for the manuscript preparation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007). Polyhedron, 26, 1711–1716.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds