organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1523-o1524

5-Hydr­­oxy-8-nitro-1,4-naphtho­quinone

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 July 2008; accepted 11 July 2008; online 19 July 2008)

The title compound, C10H5NO5, features an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring with an S(6) ring motif. The nitro group makes a dihedral angle of 71.66 (5)° with the plane of the benzene ring to which it is bound. The two rings are almost coplanar, with a dihedral angle of 4.44 (5)°. Short inter­molecular distances between the centroids of the six-membered rings [3.7188 (6)–3.8299 (6) Å] indicate the existence of ππ inter­actions. The inter­esting features of the crystal structure are the short inter­molecular O⋯O and O⋯N inter­actions. The crystal packing is stabilized by intra­molecular O—H⋯O and inter­molecular C—H⋯O (×3) hydrogen bonds, and C—H⋯π inter­actions.

Related literature

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For values of bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related literature, see, for example: Guingant & Barreto (1987[Guingant, A. & Barreto, M. M. (1987). Tetrahedron Lett. 28, 3107-3110.]); Larsen et al. (1996[Larsen, D. S., O'Shea, M. D. & Brooker, S. (1996). Chem. Commun. pp. 203-204.]); Krohn et al. (2004[Krohn, K., Sohrab, M. H. & Flörke, U. (2004). Tetrahedron Asymmetry 15, 713-718.]); Krohn et al. (2004[Krohn, K., Sohrab, M. H. & Flörke, U. (2004). Tetrahedron Asymmetry 15, 713-718.]); Cui et al. (2006[Cui, J. R., Jian, Y. J., Wu, Y. K. & Wang, S. M. (2006). Chin. J. Chem. 24, 1163-1169.]); Anuradha et al. (2006[Anuradha, V., Srinivas, P. V., Aparna, P. & Rao, J. M. (2006). Tetrahedron Lett. 47, 4933-4935.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5NO5

  • Mr = 219.15

  • Monoclinic, P 21 /n

  • a = 8.6809 (2) Å

  • b = 8.4250 (2) Å

  • c = 12.1845 (3) Å

  • β = 93.946 (1)°

  • V = 889.02 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.14 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.982

  • 22792 measured reflections

  • 3028 independent reflections

  • 2493 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.11

  • 3028 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected interatomic and centroid–centroid distances (Å)

Cg1 and Cg2 are the centroids of the C1–C5/C10 and C5–C10 rings, respectively.

Cg1⋯Cg2i 3.7188 (6)
Cg1⋯Cg2i 3.8299 (6)
O2⋯O5i 2.9940 (11)
O5⋯O5ii 3.0367 (11)
O5⋯N1ii 3.0608 (11)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y-1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.889 (18) 1.769 (19) 2.5695 (10) 148.5 (16)
C2—H2⋯O3iii 0.969 (15) 2.547 (16) 3.1853 (12) 123.4 (12)
C3—H3⋯O5ii 0.970 (15) 2.577 (15) 3.3827 (13) 140.6 (11)
C7—H7⋯O1iv 0.982 (16) 2.561 (16) 3.1851 (13) 121.4 (12)
C8—H8⋯Cg1v 0.950 (15) 2.976 (14) 3.6548 (11) 129.5 (11)
Symmetry codes: (ii) -x+2, -y-1, -z+1; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

5-Hydroxy-1,4-naphthoquinone (juglone) and its 5-acetoxy-2-bromo analogue is the essential dienophile in the highly convergent and regiospecific Diels-Alder synthesis of ochromycinone (Guingant & Barreto, 1987; Larsen et al., 1996; Krohn et al., 2004) a type of natural anthraquinone which exhibits remarkable antibiotic and antitumour activities (Krohn et al., 2004; Cui et al., 2006). Our aim is to prepare aromatic ring substituted juglone analogues for the purpose of synthesizing new ochromycinone analogues. The title compound was prepared by the direct nitration of juglone with nickel(II) nitrate. The method outlined previously (Anuradha et al., 2006) predicted a ortho-nitro product. However the product that we obtained is a para-nitro product.

Compound (I), ( Fig. 1), features an intramolecular O—H···O hydrogen bond to form a six-membered ring, producing a S(6) ring motif (Bernstein et al., 1995). The bond lenghts and angles are within the normal ranges (Allen et al., 1987). The two phenyl rings are almost coplanar with the dihedral angle of 4.44 (5)°. The nitro group is not coplanar with the benzene ring and its orientation is indicated by the dihedral angle of 71.66 (5)° with the plane of the benzene ring to which it is bound. The short intermolecular distances between the centroids of six-membered rings [3.7188 (6) - 3.8299 (6) Å] prove existence of ππ interactions (Table 1). The interesting feature of the crystal structure is the short intermolecular O···O and O···N interactions (Table 1). The crystal packing,(Fig. 2), of the compound shows one-dimensional infinite chains along the b axis.The crystal packing is stabilized by the intramolecular O—H···O, intermolecular C—H···O hydrogen bonds, ππ, and C—H···π interactions.

Related literature top

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995). For values of bond lengths, see Allen et al. (1987). For related literature, see, for example: Guingant & Barreto (1987); Larsen et al. (1996); Krohn et al. (2004); Krohn et al. (2004); Cui et al. (2006); Anuradha et al. (2006).

Experimental top

8-Nitro-5-hydroxy-1,4-naphthoquinone was prepared from 5-hydroxy-1,4-naphthoquinone by the protocol outlined by (Anuradha et al., 2006). Single crystals of 8-nitro-5-hydroxy-1,4-naphthoquinone was obtained by slow evaporation of a chloroform solution at 286 K° C.

Refinement top

All of the H-atoms were located from the difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) shows a one-dimensional infinite chain along the [010] direction when viewed down the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
5-Hydroxy-8-nitro-1,4-naphthoquinone top
Crystal data top
C10H5NO5F(000) = 448
Mr = 219.15Dx = 1.637 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5257 reflections
a = 8.6809 (2) Åθ = 2.8–31.8°
b = 8.4250 (2) ŵ = 0.14 mm1
c = 12.1845 (3) ÅT = 100 K
β = 93.946 (1)°Block, brown
V = 889.02 (4) Å30.35 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 31.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.901, Tmax = 0.982k = 1212
22792 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H5NO5V = 889.02 (4) Å3
Mr = 219.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6809 (2) ŵ = 0.14 mm1
b = 8.4250 (2) ÅT = 100 K
c = 12.1845 (3) Å0.35 × 0.14 × 0.13 mm
β = 93.946 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2493 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.982Rint = 0.041
22792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.50 e Å3
3028 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60929 (9)0.14448 (9)0.47684 (6)0.01684 (17)
O20.70729 (9)0.29533 (9)0.65117 (6)0.01718 (17)
O31.13635 (9)0.14728 (9)0.74975 (6)0.01826 (17)
O40.97394 (10)0.42986 (9)0.67891 (6)0.02146 (19)
O51.11804 (9)0.37894 (9)0.54429 (6)0.01912 (18)
N11.01058 (10)0.34927 (10)0.60140 (7)0.01427 (18)
C10.71200 (11)0.03181 (12)0.50785 (8)0.01280 (18)
C20.71889 (11)0.10405 (12)0.44177 (8)0.01457 (19)
C30.81830 (11)0.22605 (12)0.47321 (8)0.01431 (19)
C40.91370 (11)0.21081 (11)0.56968 (8)0.01219 (18)
C50.91680 (11)0.07504 (11)0.63367 (7)0.01156 (18)
C61.03288 (11)0.05166 (12)0.72840 (8)0.01326 (19)
C71.02414 (12)0.09636 (13)0.79222 (8)0.0172 (2)
C80.91880 (12)0.20847 (12)0.76649 (8)0.0168 (2)
C90.80517 (11)0.19086 (12)0.67159 (8)0.01387 (19)
C100.81225 (11)0.04769 (11)0.60319 (8)0.01189 (18)
H80.9139 (16)0.3051 (18)0.8063 (12)0.022 (4)*
H20.6513 (17)0.1106 (19)0.3752 (12)0.025 (4)*
H30.8222 (16)0.3231 (18)0.4307 (12)0.020 (3)*
H71.1034 (18)0.1097 (19)0.8530 (13)0.029 (4)*
H1O10.620 (2)0.223 (2)0.5255 (16)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (3)0.0151 (4)0.0187 (4)0.0031 (3)0.0031 (3)0.0017 (3)
O20.0197 (4)0.0144 (4)0.0176 (3)0.0040 (3)0.0029 (3)0.0005 (3)
O30.0190 (4)0.0170 (4)0.0179 (3)0.0025 (3)0.0051 (3)0.0005 (3)
O40.0285 (4)0.0150 (4)0.0210 (4)0.0010 (3)0.0023 (3)0.0054 (3)
O50.0161 (3)0.0181 (4)0.0234 (4)0.0026 (3)0.0032 (3)0.0025 (3)
N10.0159 (4)0.0110 (4)0.0155 (4)0.0001 (3)0.0015 (3)0.0010 (3)
C10.0114 (4)0.0132 (4)0.0136 (4)0.0000 (3)0.0003 (3)0.0021 (3)
C20.0142 (4)0.0156 (5)0.0135 (4)0.0011 (3)0.0018 (3)0.0004 (3)
C30.0152 (4)0.0138 (4)0.0138 (4)0.0011 (3)0.0000 (3)0.0021 (3)
C40.0122 (4)0.0110 (4)0.0133 (4)0.0007 (3)0.0005 (3)0.0008 (3)
C50.0120 (4)0.0112 (4)0.0114 (4)0.0010 (3)0.0002 (3)0.0001 (3)
C60.0143 (4)0.0130 (4)0.0122 (4)0.0011 (3)0.0012 (3)0.0005 (3)
C70.0203 (5)0.0157 (5)0.0150 (4)0.0008 (4)0.0030 (3)0.0026 (4)
C80.0204 (5)0.0144 (5)0.0153 (4)0.0006 (4)0.0005 (3)0.0035 (3)
C90.0155 (4)0.0123 (4)0.0141 (4)0.0002 (3)0.0031 (3)0.0002 (3)
C100.0123 (4)0.0110 (4)0.0124 (4)0.0001 (3)0.0011 (3)0.0004 (3)
Geometric parameters (Å, º) top
O1—C11.3388 (11)C3—C41.3964 (13)
O1—H1O10.89 (2)C3—H30.970 (15)
O2—C91.2367 (12)C4—C51.3836 (13)
O3—C61.2211 (12)C5—C101.4087 (13)
O4—N11.2229 (11)C5—C61.4921 (13)
O5—N11.2274 (11)C6—C71.4744 (14)
N1—C41.4741 (12)C7—C81.3369 (15)
C1—C21.4031 (14)C7—H70.982 (16)
C1—C101.4091 (13)C8—C91.4748 (14)
C2—C31.3793 (14)C8—H80.950 (15)
C2—H20.969 (15)C9—C101.4699 (13)
Cg1···Cg2i3.7188 (6)O5···O5ii3.0367 (11)
Cg1···Cg2i3.8299 (6)O5···N1ii3.0608 (11)
O2···O5i2.9940 (11)
C1—O1—H1O1107.7 (12)C4—C5—C6122.07 (8)
O4—N1—O5124.96 (9)C10—C5—C6119.72 (8)
O4—N1—C4117.90 (8)O3—C6—C7120.63 (9)
O5—N1—C4117.04 (8)O3—C6—C5121.69 (9)
O1—C1—C2118.06 (8)C7—C6—C5117.58 (8)
O1—C1—C10121.79 (9)C8—C7—C6122.22 (9)
C2—C1—C10120.15 (9)C8—C7—H7121.9 (10)
C3—C2—C1119.94 (9)C6—C7—H7115.8 (9)
C3—C2—H2121.4 (9)C7—C8—C9121.51 (9)
C1—C2—H2118.6 (9)C7—C8—H8122.7 (9)
C2—C3—C4119.26 (9)C9—C8—H8115.8 (9)
C2—C3—H3121.6 (9)O2—C9—C10121.66 (9)
C4—C3—H3119.1 (9)O2—C9—C8119.96 (9)
C5—C4—C3122.53 (9)C10—C9—C8118.38 (9)
C5—C4—N1121.19 (8)C5—C10—C1119.86 (9)
C3—C4—N1116.27 (8)C5—C10—C9120.27 (8)
C4—C5—C10118.10 (8)C1—C10—C9119.86 (9)
O1—C1—C2—C3177.19 (9)O3—C6—C7—C8175.40 (10)
C10—C1—C2—C33.41 (15)C5—C6—C7—C81.17 (15)
C1—C2—C3—C41.45 (15)C6—C7—C8—C90.45 (16)
C2—C3—C4—C52.37 (15)C7—C8—C9—O2178.62 (10)
C2—C3—C4—N1176.71 (9)C7—C8—C9—C101.51 (15)
O4—N1—C4—C572.88 (12)C4—C5—C10—C12.00 (14)
O5—N1—C4—C5110.47 (10)C6—C5—C10—C1174.21 (8)
O4—N1—C4—C3106.21 (10)C4—C5—C10—C9176.79 (8)
O5—N1—C4—C370.44 (11)C6—C5—C10—C97.00 (14)
C3—C4—C5—C104.07 (14)O1—C1—C10—C5178.97 (9)
N1—C4—C5—C10174.97 (8)C2—C1—C10—C51.65 (14)
C3—C4—C5—C6172.05 (9)O1—C1—C10—C90.17 (14)
N1—C4—C5—C68.92 (14)C2—C1—C10—C9179.56 (9)
C4—C5—C6—O34.45 (15)O2—C9—C10—C5174.82 (9)
C10—C5—C6—O3171.60 (9)C8—C9—C10—C55.31 (14)
C4—C5—C6—C7179.01 (9)O2—C9—C10—C13.97 (15)
C10—C5—C6—C74.94 (13)C8—C9—C10—C1175.90 (9)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.889 (18)1.769 (19)2.5695 (10)148.5 (16)
C2—H2···O3iii0.969 (15)2.547 (16)3.1853 (12)123.4 (12)
C3—H3···O5ii0.970 (15)2.577 (15)3.3827 (13)140.6 (11)
C7—H7···O1iv0.982 (16)2.561 (16)3.1851 (13)121.4 (12)
C8—H8···Cg1v0.950 (15)2.976 (14)3.6548 (11)129.5 (11)
Symmetry codes: (ii) x+2, y1, z+1; (iii) x1/2, y1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H5NO5
Mr219.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.6809 (2), 8.4250 (2), 12.1845 (3)
β (°) 93.946 (1)
V3)889.02 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.901, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22792, 3028, 2493
Rint0.041
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.11
No. of reflections3028
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cg1···Cg2i3.7188 (6)O5···O5ii3.0367 (11)
Cg1···Cg2i3.8299 (6)O5···N1ii3.0608 (11)
O2···O5i2.9940 (11)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.889 (18)1.769 (19)2.5695 (10)148.5 (16)
C2—H2···O3iii0.969 (15)2.547 (16)3.1853 (12)123.4 (12)
C3—H3···O5ii0.970 (15)2.577 (15)3.3827 (13)140.6 (11)
C7—H7···O1iv0.982 (16)2.561 (16)3.1851 (13)121.4 (12)
C8—H8···Cg1v0.950 (15)2.976 (14)3.6548 (11)129.5 (11)
Symmetry codes: (ii) x+2, y1, z+1; (iii) x1/2, y1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

Acknowledgements

HO thanks the Malaysian government for the FRGS fund (grant No. 203/PKIMIA/671026). DTCT thanks Universiti Sains Malaysia for financial support. HKF and RK thank the Malaysian government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAnuradha, V., Srinivas, P. V., Aparna, P. & Rao, J. M. (2006). Tetrahedron Lett. 47, 4933–4935.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J. R., Jian, Y. J., Wu, Y. K. & Wang, S. M. (2006). Chin. J. Chem. 24, 1163–1169.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuingant, A. & Barreto, M. M. (1987). Tetrahedron Lett. 28, 3107–3110.  CrossRef CAS Web of Science Google Scholar
First citationKrohn, K., Sohrab, M. H. & Flörke, U. (2004). Tetrahedron Asymmetry 15, 713–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarsen, D. S., O'Shea, M. D. & Brooker, S. (1996). Chem. Commun. pp. 203–204.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1523-o1524
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds