organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1550-o1551

Ethyl 4-(tert-butyl­amino)-3-nitro­benzoate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 July 2008; accepted 15 July 2008; online 19 July 2008)

In the title compound, C13H18N2O4, intra­molecular N—H⋯O, N—H⋯N and C—H⋯O (× 3) hydrogen bonds generate S(6) and S(5) ring motifs. There are two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The nitro group is coplanar with the benzene ring, with O—N—C—C torsion angles of −0.33 (13) and 0.93 (14)° in mol­ecules A and B, respectively. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular C—H⋯O hydrogen bonds. In addition, the crystal structure is stabilized by ππ inter­actions with centroid–centroid distances ranging from 3.7853 (6) to 3.8625 (6) Å.

Related literature

For literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature, see, for example: Göker et al. (1998[Göker, H., Tunçbilek, M., Ayhan, G. & Altanlar, N. (1998). Farmaco, 53, 415-420.]); Anderson (2005[Anderson, J. B. (2005). Nat. Rev. Microbiol. 3, 547-556.]); Kakei et al. (1993[Kakei, N., Ichinose, M., Tsukada, S., Tatematsu, M., Tezuka, N., Yahagi, N., Matsushima, M., Miki, K., Kurokawa, K., Takahashi, K. & Fukamachi, H. (1993). Biochem. Biophys. Res. Commun. 195, 997-1004.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O4

  • Mr = 266.29

  • Monoclinic, P 21 /c

  • a = 16.0471 (5) Å

  • b = 6.6417 (2) Å

  • c = 30.0180 (9) Å

  • β = 121.688 (2)°

  • V = 2722.37 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.43 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.984

  • 63326 measured reflections

  • 8141 independent reflections

  • 6368 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.04

  • 8141 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected centroid–centroid distances (Å)

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Cg1⋯Cg2i 3.7853 (6)
Cg1⋯Cg2ii 3.8625 (6)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O4A 0.86 1.93 2.6299 (15) 138
N2A—H2NA⋯N1A 0.86 2.54 2.9361 (15) 109
N2B—H2NB⋯O4B 0.87 1.95 2.6355 (15) 134
N2B—H2NB⋯N1B 0.87 2.58 2.9419 (15) 106
C1A—H1A⋯O3A 0.95 2.31 2.6522 (16) 100
C1B—H1B⋯O3B 0.95 2.31 2.6498 (16) 100
C4A—H4A⋯O3Biii 0.95 2.50 3.4124 (17) 160
C4B—H4B⋯O3Aiv 0.95 2.42 3.2566 (18) 147
C5A—H5A⋯O1A 0.95 2.41 2.7326 (13) 100
C11A—H11A⋯O2Bv 0.98 2.55 3.4714 (17) 157
C11B—H11F⋯O2Aii 0.98 2.52 3.4446 (17) 158
C13B—H13D⋯O2Avi 0.98 2.60 3.5071 (17) 154
Symmetry codes: (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As a part of our ongoing studies on new nitro benzoic acid derivatives, we have synthesized the title compound (I) employing a modified protocol of previous procedure (Göker et al., 1998). The nitro benzoic acid intermediates are a convenient starting material for the synthesis of heterocycles targeting important biological processes, e.g. antifungal (Fluconazole) (Anderson, 2005) and proton pump inhibitor (Omeprazole) (Kakei et al., 1993). The crystal structure of the tert-butylamino functionalized nitro benzoic acid (I) has been determined, and herein, we present a full report on its crystal structure.

In the title compound (I) (Fig. 1), intramolecular N—H···O (x 2), N—H···N (x 2), and C—H···O (x 3) hydrogen bonds (Table 2) generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). There are two crystallographically independent molecules, A and B in the asymmetric unit of the title compound. The nitro group is coplanar with the benzene ring with torsion angle of -0.33 (13) and 0.93 (14)° in the molecule A and B, respectively. In the crystal structure neighbouring molecules are linked together by intermolecular C—H···O hydrogen bonds (Table 1). In the crystal packing (Table 2 & Fig. 2), molecules are stacked down the b axis, being consolidated by ππ interactions with centroid to centroid distances ranging from 3.7853 (6) – 3.8625 (6) Å.

The crystal structure is stabilized by intramolecular N—H···O (x 2), N—H···N (x 2), C—H···O (x 3), and intermolecular C—H···O (x 5) hydrogen bonds and ππ interactions.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For values of bond lengths, see: Allen et al. (1987). For related literature, see, for example: Göker et al. (1998); Anderson (2005); Kakei et al. (1993).

Experimental top

Ethyl 4-fluoro-3-nitrobenzoate (200 mg, 0.93 mmol) was dissolved in dry dichloromethane (10 ml). N, N-diisopropylethylamine (DIPEA) (0.20 ml, 1.12 mmol) was added to the stirred mixture. Then, tert-butylamine (0.11 ml, 1.03 mmol) was added dropwise using syringe and stirred at room temperature under N2 overnight. After completion of the reaction, the mixture was washed with 10% NaCO3 (10 ml). The aqueous layer was washed with dichloromethane (3 x 15 ml). The organic layers were collected and dried over MgSO4 (anhydrous). The solvent was removed under reduced pressure to yield the crude product. Recrystallisation with hot hexane revealed the title compound (I) as bright yellow crystals.

Refinement top

The H-atoms attached to N2A and N2B were located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–98 Å] and refined using a riding model. A rotating-group model was used for the methyl groups. The highest peak is located 0.63 Å from C6B and the deepest hole is located 0.59 Å from N1A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), showing stacking arrangement viewed down the b-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
Ethyl 4-(tert-butylamino)-3-nitrobenzoate top
Crystal data top
C13H18N2O4F(000) = 1136
Mr = 266.29Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9969 reflections
a = 16.0471 (5) Åθ = 2.5–30.1°
b = 6.6417 (2) ŵ = 0.10 mm1
c = 30.0180 (9) ÅT = 100 K
β = 121.688 (2)°Plate, yellow
V = 2722.37 (14) Å30.51 × 0.43 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8141 independent reflections
Radiation source: fine-focus sealed tube6368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2122
Tmin = 0.879, Tmax = 0.984k = 99
63326 measured reflectionsl = 4142
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.787P]
where P = (Fo2 + 2Fc2)/3
8141 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H18N2O4V = 2722.37 (14) Å3
Mr = 266.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.0471 (5) ŵ = 0.10 mm1
b = 6.6417 (2) ÅT = 100 K
c = 30.0180 (9) Å0.51 × 0.43 × 0.17 mm
β = 121.688 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8141 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6368 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.984Rint = 0.033
63326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
8141 reflectionsΔρmin = 0.24 e Å3
351 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.01188 (6)0.50707 (13)0.90700 (3)0.02027 (18)
O2A0.87073 (6)0.53054 (14)0.90534 (3)0.02371 (19)
O3A0.57249 (6)0.54152 (13)0.73478 (3)0.02243 (18)
O4A0.56803 (6)0.54680 (13)0.66152 (3)0.02250 (18)
N1A0.61441 (6)0.54228 (13)0.71013 (4)0.01589 (18)
N2A0.73120 (6)0.54415 (13)0.66080 (3)0.01583 (18)
H2NA0.66820.54970.64440.019*
C1A0.76647 (7)0.53258 (15)0.79329 (4)0.0143 (2)
H1A0.72810.53350.80890.017*
C2A0.72036 (7)0.53705 (15)0.73898 (4)0.01349 (19)
C3A0.77441 (7)0.53716 (14)0.71324 (4)0.01347 (19)
C4A0.87825 (7)0.52932 (15)0.74731 (4)0.0151 (2)
H4A0.91800.52710.73250.018*
C5A0.92253 (7)0.52490 (15)0.80055 (4)0.0149 (2)
H5A0.99200.52040.82170.018*
C6A0.86747 (7)0.52682 (15)0.82473 (4)0.0142 (2)
C7A0.91408 (8)0.52224 (16)0.88226 (4)0.0159 (2)
C8A1.06291 (8)0.5008 (2)0.96363 (4)0.0252 (3)
H8A1.04120.38280.97510.030*
H8B1.04890.62420.97710.030*
C9A1.17025 (9)0.4861 (2)0.98412 (5)0.0347 (3)
H9A1.20690.48771.02250.052*
H9B1.19040.60060.97130.052*
H9C1.18370.36030.97200.052*
C10A0.77667 (8)0.54745 (16)0.62878 (4)0.0163 (2)
C11A0.83246 (8)0.35165 (17)0.63510 (4)0.0203 (2)
H11A0.78770.23700.62540.030*
H11B0.88610.33730.67160.030*
H11C0.85930.35550.61240.030*
C12A0.68959 (9)0.56150 (19)0.57218 (4)0.0233 (2)
H12A0.64580.44650.56470.035*
H12B0.71360.56000.54810.035*
H12C0.65370.68690.56760.035*
C13A0.84047 (8)0.73502 (17)0.64034 (4)0.0195 (2)
H13A0.89270.73590.67740.029*
H13B0.80000.85600.63240.029*
H13C0.86950.73310.61860.029*
O1B0.49200 (5)0.43211 (13)0.10402 (3)0.02139 (18)
O2B0.63293 (6)0.45058 (13)0.10484 (3)0.02286 (18)
O3B0.93204 (6)0.47400 (13)0.27341 (3)0.02111 (18)
O4B0.93898 (6)0.47557 (13)0.34743 (3)0.02151 (18)
N1B0.89147 (6)0.47252 (13)0.29872 (4)0.01529 (18)
N2B0.77682 (6)0.47199 (14)0.34950 (3)0.01565 (18)
H2NB0.84070.47670.36710.019*
C1B0.73817 (7)0.46115 (15)0.21633 (4)0.01401 (19)
H1B0.77570.46080.20020.017*
C2B0.78566 (7)0.46722 (15)0.27069 (4)0.01293 (19)
C3B0.73273 (7)0.46737 (15)0.29702 (4)0.01340 (19)
C4B0.62889 (8)0.46322 (16)0.26366 (4)0.0157 (2)
H4B0.59000.46450.27900.019*
C5B0.58317 (7)0.45740 (15)0.21029 (4)0.0154 (2)
H5B0.51370.45450.18950.019*
C6B0.63721 (7)0.45564 (15)0.18553 (4)0.01401 (19)
C7B0.58976 (8)0.44669 (16)0.12800 (4)0.0168 (2)
C8B0.43816 (8)0.4179 (2)0.04737 (4)0.0260 (3)
H8C0.37510.34840.03500.031*
H8D0.47620.33700.03650.031*
C9B0.41883 (9)0.6226 (2)0.02271 (5)0.0302 (3)
H9D0.38040.60890.01550.045*
H9E0.48120.68880.03350.045*
H9F0.38220.70380.03400.045*
C10B0.73206 (8)0.46992 (16)0.38189 (4)0.0172 (2)
C11B0.67381 (8)0.27595 (17)0.37340 (4)0.0217 (2)
H11D0.61890.26980.33700.032*
H11E0.64870.27470.39690.032*
H11F0.71660.15930.38090.032*
C12B0.81999 (9)0.47351 (19)0.43837 (4)0.0246 (2)
H12D0.85820.59640.44410.037*
H12E0.86130.35550.44450.037*
H12F0.79660.47100.46270.037*
C13B0.66997 (8)0.65807 (18)0.37269 (5)0.0222 (2)
H13D0.71080.77840.38060.033*
H13E0.64330.65410.39550.033*
H13F0.61600.66230.33600.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0132 (3)0.0327 (5)0.0134 (4)0.0004 (3)0.0059 (3)0.0014 (3)
O2A0.0181 (4)0.0365 (5)0.0190 (4)0.0000 (3)0.0114 (3)0.0013 (3)
O3A0.0154 (4)0.0298 (5)0.0260 (4)0.0006 (3)0.0135 (3)0.0003 (3)
O4A0.0136 (4)0.0309 (5)0.0186 (4)0.0002 (3)0.0055 (3)0.0002 (3)
N1A0.0126 (4)0.0142 (4)0.0205 (4)0.0004 (3)0.0084 (3)0.0004 (3)
N2A0.0120 (4)0.0192 (4)0.0151 (4)0.0004 (3)0.0062 (3)0.0003 (3)
C1A0.0149 (5)0.0111 (4)0.0189 (5)0.0006 (3)0.0104 (4)0.0004 (4)
C2A0.0102 (4)0.0119 (5)0.0175 (5)0.0002 (3)0.0068 (4)0.0002 (4)
C3A0.0135 (4)0.0099 (4)0.0168 (5)0.0006 (3)0.0078 (4)0.0003 (3)
C4A0.0127 (4)0.0155 (5)0.0182 (5)0.0003 (4)0.0088 (4)0.0005 (4)
C5A0.0124 (4)0.0145 (5)0.0175 (5)0.0003 (4)0.0076 (4)0.0006 (4)
C6A0.0147 (5)0.0131 (5)0.0148 (5)0.0004 (4)0.0077 (4)0.0005 (4)
C7A0.0140 (5)0.0160 (5)0.0170 (5)0.0009 (4)0.0075 (4)0.0013 (4)
C8A0.0188 (5)0.0421 (7)0.0122 (5)0.0004 (5)0.0065 (4)0.0021 (5)
C9A0.0184 (6)0.0630 (10)0.0180 (6)0.0030 (6)0.0063 (5)0.0027 (6)
C10A0.0161 (5)0.0183 (5)0.0154 (5)0.0005 (4)0.0088 (4)0.0001 (4)
C11A0.0208 (5)0.0181 (5)0.0240 (5)0.0002 (4)0.0131 (4)0.0028 (4)
C12A0.0212 (5)0.0303 (6)0.0157 (5)0.0009 (5)0.0078 (4)0.0005 (4)
C13A0.0205 (5)0.0190 (5)0.0203 (5)0.0011 (4)0.0116 (4)0.0018 (4)
O1B0.0133 (4)0.0343 (5)0.0138 (4)0.0022 (3)0.0053 (3)0.0013 (3)
O2B0.0181 (4)0.0339 (5)0.0178 (4)0.0012 (3)0.0102 (3)0.0004 (3)
O3B0.0150 (4)0.0280 (4)0.0238 (4)0.0003 (3)0.0127 (3)0.0009 (3)
O4B0.0136 (4)0.0302 (5)0.0164 (4)0.0002 (3)0.0049 (3)0.0004 (3)
N1B0.0135 (4)0.0134 (4)0.0186 (4)0.0001 (3)0.0081 (3)0.0002 (3)
N2B0.0129 (4)0.0195 (4)0.0143 (4)0.0001 (3)0.0070 (3)0.0001 (3)
C1B0.0144 (4)0.0125 (5)0.0168 (5)0.0004 (3)0.0093 (4)0.0006 (4)
C2B0.0108 (4)0.0113 (4)0.0166 (5)0.0003 (3)0.0072 (4)0.0007 (3)
C3B0.0147 (5)0.0101 (4)0.0151 (5)0.0004 (3)0.0077 (4)0.0010 (3)
C4B0.0137 (4)0.0173 (5)0.0185 (5)0.0004 (4)0.0100 (4)0.0005 (4)
C5B0.0121 (4)0.0151 (5)0.0185 (5)0.0000 (4)0.0076 (4)0.0007 (4)
C6B0.0135 (4)0.0133 (5)0.0148 (5)0.0000 (3)0.0071 (4)0.0009 (3)
C7B0.0152 (5)0.0170 (5)0.0163 (5)0.0001 (4)0.0070 (4)0.0007 (4)
C8B0.0176 (5)0.0410 (7)0.0148 (5)0.0037 (5)0.0055 (4)0.0017 (5)
C9B0.0236 (6)0.0469 (8)0.0197 (6)0.0022 (5)0.0111 (5)0.0074 (5)
C10B0.0194 (5)0.0187 (5)0.0158 (5)0.0009 (4)0.0107 (4)0.0007 (4)
C11B0.0255 (6)0.0209 (5)0.0226 (5)0.0013 (4)0.0154 (5)0.0024 (4)
C12B0.0265 (6)0.0306 (6)0.0152 (5)0.0009 (5)0.0099 (5)0.0008 (4)
C13B0.0242 (5)0.0205 (5)0.0251 (6)0.0019 (4)0.0151 (5)0.0022 (4)
Geometric parameters (Å, º) top
O1A—C7A1.3418 (13)O1B—C7B1.3424 (13)
O1A—C8A1.4489 (13)O1B—C8B1.4503 (13)
O2A—C7A1.2136 (13)O2B—C7B1.2125 (13)
O3A—N1A1.2340 (12)O3B—N1B1.2332 (12)
O4A—N1A1.2424 (12)O4B—N1B1.2443 (12)
N1A—C2A1.4474 (13)N1B—C2B1.4462 (13)
N2A—C3A1.3470 (13)N2B—C3B1.3463 (13)
N2A—C10A1.4810 (13)N2B—C10B1.4816 (13)
N2A—H2NA0.8617N2B—H2NB0.8733
C1A—C6A1.3827 (14)C1B—C6B1.3809 (14)
C1A—C2A1.3925 (14)C1B—C2B1.3924 (14)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.4328 (14)C2B—C3B1.4321 (14)
C3A—C4A1.4265 (14)C3B—C4B1.4238 (14)
C4A—C5A1.3663 (14)C4B—C5B1.3683 (14)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.4076 (14)C5B—C6B1.4076 (14)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.4784 (14)C6B—C7B1.4778 (14)
C8A—C9A1.4973 (17)C8B—C9B1.5003 (19)
C8A—H8A0.9900C8B—H8C0.9900
C8A—H8B0.9900C8B—H8D0.9900
C9A—H9A0.9800C9B—H9D0.9800
C9A—H9B0.9800C9B—H9E0.9800
C9A—H9C0.9800C9B—H9F0.9800
C10A—C13A1.5320 (15)C10B—C13B1.5302 (15)
C10A—C11A1.5331 (15)C10B—C11B1.5323 (15)
C10A—C12A1.5343 (15)C10B—C12B1.5338 (15)
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—H13A0.9800C13B—H13D0.9800
C13A—H13B0.9800C13B—H13E0.9800
C13A—H13C0.9800C13B—H13F0.9800
Cg1···Cg2i3.7853 (6)Cg1···Cg2ii3.8625 (6)
C7A—O1A—C8A115.30 (9)C7B—O1B—C8B116.24 (9)
O3A—N1A—O4A121.71 (9)O3B—N1B—O4B121.87 (9)
O3A—N1A—C2A118.70 (9)O3B—N1B—C2B118.70 (9)
O4A—N1A—C2A119.59 (9)O4B—N1B—C2B119.43 (9)
C3A—N2A—C10A129.22 (9)C3B—N2B—C10B129.04 (9)
C3A—N2A—H2NA113.4C3B—N2B—H2NB115.9
C10A—N2A—H2NA117.3C10B—N2B—H2NB115.0
C6A—C1A—C2A120.74 (9)C6B—C1B—C2B120.85 (9)
C6A—C1A—H1A119.6C6B—C1B—H1B119.6
C2A—C1A—H1A119.6C2B—C1B—H1B119.6
C1A—C2A—C3A122.10 (9)C1B—C2B—C3B121.91 (9)
C1A—C2A—N1A115.83 (9)C1B—C2B—N1B115.79 (9)
C3A—C2A—N1A122.07 (9)C3B—C2B—N1B122.30 (9)
N2A—C3A—C4A121.97 (9)N2B—C3B—C4B121.65 (9)
N2A—C3A—C2A122.98 (9)N2B—C3B—C2B123.11 (9)
C4A—C3A—C2A115.05 (9)C4B—C3B—C2B115.23 (9)
C5A—C4A—C3A122.23 (10)C5B—C4B—C3B122.25 (9)
C5A—C4A—H4A118.9C5B—C4B—H4B118.9
C3A—C4A—H4A118.9C3B—C4B—H4B118.9
C4A—C5A—C6A121.42 (9)C4B—C5B—C6B121.22 (9)
C4A—C5A—H5A119.3C4B—C5B—H5B119.4
C6A—C5A—H5A119.3C6B—C5B—H5B119.4
C1A—C6A—C5A118.45 (9)C1B—C6B—C5B118.54 (9)
C1A—C6A—C7A119.36 (9)C1B—C6B—C7B119.12 (9)
C5A—C6A—C7A122.19 (9)C5B—C6B—C7B122.34 (9)
O2A—C7A—O1A122.82 (10)O2B—C7B—O1B123.56 (10)
O2A—C7A—C6A125.16 (10)O2B—C7B—C6B124.77 (10)
O1A—C7A—C6A112.03 (9)O1B—C7B—C6B111.67 (9)
O1A—C8A—C9A107.65 (9)O1B—C8B—C9B111.18 (11)
O1A—C8A—H8A110.2O1B—C8B—H8C109.4
C9A—C8A—H8A110.2C9B—C8B—H8C109.4
O1A—C8A—H8B110.2O1B—C8B—H8D109.4
C9A—C8A—H8B110.2C9B—C8B—H8D109.4
H8A—C8A—H8B108.5H8C—C8B—H8D108.0
C8A—C9A—H9A109.5C8B—C9B—H9D109.5
C8A—C9A—H9B109.5C8B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C8A—C9A—H9C109.5C8B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
N2A—C10A—C13A111.31 (9)N2B—C10B—C13B111.59 (9)
N2A—C10A—C11A111.21 (9)N2B—C10B—C11B111.24 (9)
C13A—C10A—C11A112.61 (9)C13B—C10B—C11B111.97 (9)
N2A—C10A—C12A104.30 (8)N2B—C10B—C12B104.10 (9)
C13A—C10A—C12A108.24 (9)C13B—C10B—C12B108.70 (9)
C11A—C10A—C12A108.76 (9)C11B—C10B—C12B108.88 (9)
C10A—C11A—H11A109.5C10B—C11B—H11D109.5
C10A—C11A—H11B109.5C10B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C10A—C11A—H11C109.5C10B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C10A—C12A—H12A109.5C10B—C12B—H12D109.5
C10A—C12A—H12B109.5C10B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C10A—C12A—H12C109.5C10B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C10A—C13A—H13A109.5C10B—C13B—H13D109.5
C10A—C13A—H13B109.5C10B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C10A—C13A—H13C109.5C10B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4A0.861.932.6299 (15)138
N2A—H2NA···N1A0.862.542.9361 (15)109
N2B—H2NB···O4B0.871.952.6355 (15)134
N2B—H2NB···N1B0.872.582.9419 (15)106
C1A—H1A···O3A0.952.312.6522 (16)100
C1B—H1B···O3B0.952.312.6498 (16)100
C4A—H4A···O3Biii0.952.503.4124 (17)160
C4B—H4B···O3Aiv0.952.423.2566 (18)147
C5A—H5A···O1A0.952.412.7326 (13)100
C11A—H11A···O2Bv0.982.553.4714 (17)157
C11B—H11F···O2Aii0.982.523.4446 (17)158
C13B—H13D···O2Avi0.982.603.5071 (17)154
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H18N2O4
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.0471 (5), 6.6417 (2), 30.0180 (9)
β (°) 121.688 (2)
V3)2722.37 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.43 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.879, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
63326, 8141, 6368
Rint0.033
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.04
No. of reflections8141
No. of parameters351
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cg1···Cg2i3.7853 (6)Cg1···Cg2ii3.8625 (6)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4A0.86001.93002.6299 (15)138.00
N2A—H2NA···N1A0.86002.54002.9361 (15)109.00
N2B—H2NB···O4B0.87001.95002.6355 (15)134.00
N2B—H2NB···N1B0.87002.58002.9419 (15)106.00
C1A—H1A···O3A0.95002.31002.6522 (16)100.00
C1B—H1B···O3B0.95002.31002.6498 (16)100.00
C4A—H4A···O3Biii0.95002.50003.4124 (17)160.00
C4B—H4B···O3Aiv0.95002.42003.2566 (18)147.00
C5A—H5A···O1A0.95002.41002.7326 (13)100.00
C11A—H11A···O2Bv0.98002.55003.4714 (17)157.00
C11B—H11F···O2Aii0.98002.52003.4446 (17)158.00
C13B—H13D···O2Avi0.98002.60003.5071 (17)154.00
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

Acknowledgements

We are grateful to the Malaysian Government and Universiti Sains Malaysia (USM) for financial support given under the USM Research University funding (1001/PFARMASI/815026). HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/ 613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, J. B. (2005). Nat. Rev. Microbiol. 3, 547–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGöker, H., Tunçbilek, M., Ayhan, G. & Altanlar, N. (1998). Farmaco, 53, 415–420.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKakei, N., Ichinose, M., Tsukada, S., Tatematsu, M., Tezuka, N., Yahagi, N., Matsushima, M., Miki, K., Kurokawa, K., Takahashi, K. & Fukamachi, H. (1993). Biochem. Biophys. Res. Commun. 195, 997–1004.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1550-o1551
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds