organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl­sulfanyl-5-(4-phenyl-1H-1,2,3-triazol-1-ylmeth­yl)-4H-1,2,4-triazol-4-amine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China
*Correspondence e-mail: qustchemistry@126.com

(Received 14 July 2008; accepted 23 July 2008; online 31 July 2008)

The mol­ecule of the title compound, C18H17N7S, is non-planar, with a dihedral angle of 71.4 (4)° between the two triazole rings, and an angle of 15.5 (3)° between the two phenyl rings. An intra­molecular N—H⋯S hydrogen bond forms a five-membered ring.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Barchiesi et al. (2000[Barchiesi, F., Arzeni, D., Fothergill, A. W., Falconi di Francesco, L., Caselli, F., Rinaldi, M. G. & Scalise, G. (2000). Antimicrob. Agents Chemother. 44, 226-229.]); Colanceska-Ragenovic et al. (2001[Colanceska-Ragenovic, K., Dimova, V., Kakurinov, V., Gabor Molnar, D. & Buzarovska, A. (2001). Molecules, 6, 815-824.]); Kaplancıklı et al. (2008[Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A. & Revial, G. (2008). Eur. J. Med. Chem. 43, 155-159.]); Khanum et al. (2005[Khanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156-1162.]); Rodriguez-Fernandez et al. (2005[Rodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem. 99, 1558-1572.]); Zhang et al. (2008[Zhang, X. R., Xu, M. H. & Zhang, S. S. (2008). J. Chin. Chem. Soc. 26, 745-750.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N7S

  • Mr = 363.45

  • Orthorhombic, P n a 21

  • a = 8.0487 (15) Å

  • b = 5.4689 (10) Å

  • c = 38.721 (7) Å

  • V = 1704.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 186.5 (2) K

  • 0.35 × 0.25 × 0.04 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.992

  • 7815 measured reflections

  • 2854 independent reflections

  • 2592 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.183

  • S = 1.20

  • 2854 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2854 Freidel pairs

  • Flack parameter: 0.05 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7B⋯S1 0.86 2.77 3.116 (6) 105

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Triazole derivatives exhibit higher antifungal activity against filamentous fungi and yeasts (Barchiesi et al., 2000), and their antibacterial properties have been reported as well (Colanceska-Ragenovic et al., 2001). The biological activities of various 1,2,3-triazole and 1,2,4-triazole derivatives have been extensively studied (Rodriguez-Fernandez et al., 2005; Kaplancıklı et al., 2008; Khanum et al., 2005). As an extension of the work on structure characterization of triazole derivatives, the title compound (I) was synthesized and its structure was characterized by X-ray crystallographic analysis.

In (I) (Fig. 1), all the bond lengths and angles are within normal ranges (Allen et al., 1987). A (N1–N3/C7/C8) triazole ring makes dihedral angles of 11.6 (3) and 25.6 (3)° with B (C1–C6) and C (C13–C18) phenyl rings, respectively, and of 71.4 (4)° with D (N4–N6/C10/C11) triazole ring. In addition, the dihedral angles between B and C, C and D, and B and D are 15.5 (3), 67.7 (3) and 73.7 (3)°, respectively. There exists one intramolecular hydrogen bond, N7—H7B···S1 (Table 1), forming a five-membered ring.

Related literature top

For related literature, see: Allen et al. (1987); Barchiesi et al. (2000); Colanceska-Ragenovic et al. (2001); Kaplancıklı et al. (2008); Khanum et al. (2005); Rodriguez-Fernandez et al. (2005); Zhang et al. (2008).

Experimental top

3-{[4-(4-phenyl)-1H-1,2,3-triazol-1-yl]methyl}-4-amino-5-thiol-1,2,4-triazole (Zhang et al., 2008) (1.00 g, 3.66 mmol) was added to a mixture of 50% NaOH (w/w) 5 ml, water (30 ml) and benzyl bromide (0.87 ml, 7.32 mmol). The mixture was stirred for 5 h. The resulting precipitate was collected by filtration, washed by water and recrystallized from acetone to give compound I (1.09 g, 82.0%). Colourless single crystals suitable for an X-ray diffraction study were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and N—H distances of 0.86 Å, and with Uiso(H) = 1.2 Ueq(C) H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the c axis.
3-Benzylsulfanyl-5-(4-phenyl-1H-1,2,3-triazol-1-ylmethyl)-4H- 1,2,4-triazol-4-amine top
Crystal data top
C18H17N7SF(000) = 760
Mr = 363.45Dx = 1.416 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1817 reflections
a = 8.0487 (15) Åθ = 3.2–25.0°
b = 5.4689 (10) ŵ = 0.21 mm1
c = 38.721 (7) ÅT = 187 K
V = 1704.4 (5) Å3Plate, colourless
Z = 40.35 × 0.25 × 0.04 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2854 independent reflections
Radiation source: fine-focus sealed tube2592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 65
Tmin = 0.931, Tmax = 0.992l = 4046
7815 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0579P)2 + 3.955P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.002
2854 reflectionsΔρmax = 0.48 e Å3
235 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), with 2854 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (19)
Crystal data top
C18H17N7SV = 1704.4 (5) Å3
Mr = 363.45Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.0487 (15) ŵ = 0.21 mm1
b = 5.4689 (10) ÅT = 187 K
c = 38.721 (7) Å0.35 × 0.25 × 0.04 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2854 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2592 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.992Rint = 0.052
7815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.183Δρmax = 0.48 e Å3
S = 1.20Δρmin = 0.39 e Å3
2854 reflectionsAbsolute structure: Flack (1983), with 2854 Freidel pairs
235 parametersAbsolute structure parameter: 0.05 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0735 (2)0.5751 (3)0.34992 (5)0.0348 (4)
N50.0030 (7)0.2276 (10)0.39829 (15)0.0349 (13)
C110.0723 (7)0.4329 (11)0.38974 (17)0.0284 (14)
N60.1621 (6)0.5157 (9)0.41739 (14)0.0299 (12)
C10.0955 (7)0.3110 (10)0.60677 (16)0.0266 (14)
H1A0.03140.17970.59930.032*
C70.0485 (7)0.5171 (11)0.55000 (16)0.0245 (14)
N40.0366 (7)0.1806 (11)0.43251 (16)0.0398 (15)
C130.0838 (8)0.4412 (12)0.29074 (17)0.0344 (16)
N10.0513 (8)0.7223 (11)0.53032 (15)0.0428 (15)
C30.2600 (7)0.4969 (12)0.65095 (18)0.0305 (14)
H3A0.30610.49230.67300.037*
N20.0363 (8)0.6895 (11)0.50221 (17)0.0464 (16)
C50.2313 (8)0.6963 (10)0.59606 (18)0.0297 (15)
H5B0.25760.82610.58150.036*
C140.0064 (8)0.2866 (11)0.26757 (19)0.0356 (17)
H14A0.04960.14980.27580.043*
N30.0979 (6)0.4597 (10)0.50423 (14)0.0322 (13)
C160.0919 (9)0.5334 (14)0.2199 (2)0.0419 (18)
H16A0.09670.56340.19630.050*
N70.2650 (7)0.7185 (10)0.41686 (15)0.0423 (15)
H7A0.32270.75550.43480.051*
H7B0.27120.80750.39860.051*
C20.1574 (9)0.3117 (11)0.63972 (17)0.0354 (16)
H2B0.12990.18530.65470.042*
C40.2935 (8)0.6914 (11)0.62878 (17)0.0302 (15)
H4B0.35940.82010.63650.036*
C60.1276 (7)0.5067 (11)0.58396 (16)0.0258 (14)
C170.1648 (8)0.6881 (11)0.24299 (18)0.0334 (16)
H17A0.22060.82450.23460.040*
C100.1372 (7)0.3584 (12)0.44322 (16)0.0286 (14)
C180.1598 (8)0.6523 (11)0.27809 (18)0.0321 (15)
H18A0.20620.76620.29310.038*
C80.0472 (7)0.3493 (11)0.53312 (16)0.0271 (14)
H8A0.07200.19100.54030.033*
C150.0103 (8)0.3297 (13)0.2329 (2)0.0386 (17)
H15A0.04210.22200.21780.046*
C90.2124 (8)0.3702 (15)0.47810 (17)0.0405 (17)
H9A0.25020.20820.48460.049*
H9B0.30880.47660.47740.049*
C120.0816 (10)0.3877 (15)0.3288 (2)0.053 (2)
H12A0.05650.21620.33250.063*
H12B0.19010.42130.33860.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (8)0.0356 (9)0.0361 (9)0.0077 (7)0.0003 (8)0.0057 (9)
N50.029 (3)0.035 (3)0.041 (3)0.009 (3)0.000 (2)0.007 (3)
C110.019 (3)0.024 (3)0.043 (4)0.001 (3)0.005 (3)0.001 (3)
N60.027 (3)0.026 (3)0.037 (3)0.001 (2)0.002 (2)0.001 (3)
C10.018 (3)0.019 (3)0.042 (4)0.004 (3)0.004 (3)0.003 (3)
C70.019 (3)0.017 (3)0.037 (4)0.003 (2)0.005 (2)0.002 (3)
N40.033 (3)0.043 (4)0.043 (4)0.004 (3)0.009 (3)0.014 (3)
C130.032 (4)0.029 (3)0.042 (4)0.006 (3)0.006 (3)0.008 (3)
N10.046 (3)0.039 (3)0.043 (4)0.014 (3)0.011 (3)0.011 (3)
C30.020 (3)0.032 (4)0.040 (4)0.006 (3)0.000 (3)0.001 (3)
N20.047 (4)0.037 (4)0.055 (4)0.018 (3)0.011 (3)0.016 (3)
C50.032 (3)0.010 (3)0.048 (4)0.004 (3)0.007 (3)0.002 (2)
C140.021 (3)0.015 (3)0.071 (5)0.007 (3)0.011 (3)0.006 (3)
N30.016 (2)0.041 (3)0.039 (3)0.011 (2)0.000 (2)0.002 (3)
C160.036 (4)0.051 (5)0.039 (4)0.019 (4)0.004 (3)0.001 (4)
N70.042 (3)0.033 (3)0.051 (4)0.011 (3)0.008 (3)0.006 (3)
C20.042 (4)0.025 (3)0.040 (4)0.005 (3)0.002 (3)0.005 (3)
C40.024 (3)0.023 (3)0.044 (4)0.011 (3)0.001 (3)0.004 (3)
C60.025 (3)0.020 (3)0.032 (4)0.008 (3)0.007 (3)0.001 (2)
C170.026 (3)0.018 (3)0.056 (5)0.009 (3)0.005 (3)0.001 (3)
C100.024 (3)0.030 (3)0.031 (4)0.005 (3)0.003 (3)0.004 (3)
C180.023 (3)0.023 (3)0.050 (4)0.004 (3)0.006 (3)0.000 (3)
C80.029 (3)0.015 (3)0.037 (4)0.011 (3)0.005 (3)0.001 (3)
C150.030 (4)0.034 (4)0.052 (5)0.001 (3)0.001 (3)0.015 (3)
C90.026 (3)0.060 (5)0.035 (4)0.007 (3)0.007 (3)0.001 (4)
C120.045 (4)0.060 (5)0.053 (5)0.034 (4)0.008 (4)0.012 (4)
Geometric parameters (Å, º) top
S1—C111.727 (6)C5—C61.411 (9)
S1—C121.810 (7)C5—H5B0.9300
N5—C111.318 (8)C14—C151.365 (10)
N5—N41.387 (8)C14—H14A0.9300
C11—N61.369 (8)N3—C81.335 (8)
N6—C101.334 (8)N3—C91.454 (8)
N6—N71.385 (7)C16—C171.363 (10)
C1—C21.370 (9)C16—C151.386 (10)
C1—C61.412 (8)C16—H16A0.9300
C1—H1A0.9300N7—H7A0.8600
C7—N11.357 (8)N7—H7B0.8600
C7—C81.365 (8)C2—H2B0.9300
C7—C61.462 (8)C4—H4B0.9300
N4—C101.332 (9)C17—C181.374 (9)
C13—C141.381 (10)C17—H17A0.9300
C13—C181.395 (9)C10—C91.481 (9)
C13—C121.503 (10)C18—H18A0.9300
N1—N21.309 (8)C8—H8A0.9300
C3—C21.377 (9)C15—H15A0.9300
C3—C41.393 (9)C9—H9A0.9700
C3—H3A0.9300C9—H9B0.9700
N2—N31.353 (8)C12—H12A0.9700
C5—C41.362 (9)C12—H12B0.9700
C11—S1—C1298.3 (3)H7A—N7—H7B120.0
C11—N5—N4107.0 (5)C1—C2—C3121.0 (6)
N5—C11—N6109.2 (5)C1—C2—H2B119.5
N5—C11—S1127.6 (5)C3—C2—H2B119.5
N6—C11—S1123.1 (4)C5—C4—C3121.2 (6)
C10—N6—C11107.1 (5)C5—C4—H4B119.4
C10—N6—N7128.1 (6)C3—C4—H4B119.4
C11—N6—N7124.7 (5)C5—C6—C1117.2 (6)
C2—C1—C6120.9 (6)C5—C6—C7121.9 (6)
C2—C1—H1A119.5C1—C6—C7120.8 (6)
C6—C1—H1A119.5C16—C17—C18123.2 (7)
N1—C7—C8107.3 (6)C16—C17—H17A118.4
N1—C7—C6122.0 (5)C18—C17—H17A118.4
C8—C7—C6130.6 (6)N4—C10—N6109.2 (6)
C10—N4—N5107.6 (5)N4—C10—C9124.3 (6)
C14—C13—C18118.4 (6)N6—C10—C9126.5 (6)
C14—C13—C12120.8 (6)C17—C18—C13118.6 (6)
C18—C13—C12120.7 (7)C17—C18—H18A120.7
N2—N1—C7110.1 (5)C13—C18—H18A120.7
C2—C3—C4118.9 (6)N3—C8—C7105.6 (5)
C2—C3—H3A120.6N3—C8—H8A127.2
C4—C3—H3A120.6C7—C8—H8A127.2
N1—N2—N3106.0 (5)C14—C15—C16120.3 (7)
C4—C5—C6120.7 (6)C14—C15—H15A119.8
C4—C5—H5B119.6C16—C15—H15A119.8
C6—C5—H5B119.6N3—C9—C10113.0 (5)
C15—C14—C13121.6 (6)N3—C9—H9A109.0
C15—C14—H14A119.2C10—C9—H9A109.0
C13—C14—H14A119.2N3—C9—H9B109.0
C8—N3—N2110.9 (5)C10—C9—H9B109.0
C8—N3—C9128.7 (5)H9A—C9—H9B107.8
N2—N3—C9120.3 (6)C13—C12—S1109.9 (5)
C17—C16—C15117.8 (7)C13—C12—H12A109.7
C17—C16—H16A121.1S1—C12—H12A109.7
C15—C16—H16A121.1C13—C12—H12B109.7
N6—N7—H7A120.0S1—C12—H12B109.7
N6—N7—H7B120.0H12A—C12—H12B108.2
N4—N5—C11—N61.3 (7)N1—C7—C6—C1167.2 (6)
N4—N5—C11—S1177.6 (5)C8—C7—C6—C17.4 (10)
C12—S1—C11—N59.0 (7)C15—C16—C17—C180.5 (10)
C12—S1—C11—N6175.1 (6)N5—N4—C10—N60.3 (7)
N5—C11—N6—C101.1 (7)N5—N4—C10—C9177.8 (6)
S1—C11—N6—C10177.7 (5)C11—N6—C10—N40.5 (7)
N5—C11—N6—N7175.7 (6)N7—N6—C10—N4176.2 (6)
S1—C11—N6—N70.8 (8)C11—N6—C10—C9178.5 (6)
C11—N5—N4—C101.0 (7)N7—N6—C10—C91.8 (10)
C8—C7—N1—N20.4 (8)C16—C17—C18—C133.3 (10)
C6—C7—N1—N2176.2 (6)C14—C13—C18—C174.6 (9)
C7—N1—N2—N30.7 (8)C12—C13—C18—C17177.3 (6)
C18—C13—C14—C153.3 (10)N2—N3—C8—C70.6 (7)
C12—C13—C14—C15178.6 (6)C9—N3—C8—C7175.1 (6)
N1—N2—N3—C80.8 (7)N1—C7—C8—N30.1 (7)
N1—N2—N3—C9175.3 (6)C6—C7—C8—N3175.1 (6)
C6—C1—C2—C33.4 (9)C13—C14—C15—C160.5 (10)
C4—C3—C2—C13.2 (9)C17—C16—C15—C140.9 (10)
C6—C5—C4—C31.6 (10)C8—N3—C9—C10121.5 (7)
C2—C3—C4—C52.3 (10)N2—N3—C9—C1063.1 (8)
C4—C5—C6—C11.7 (9)N4—C10—C9—N379.2 (8)
C4—C5—C6—C7175.0 (6)N6—C10—C9—N3103.1 (8)
C2—C1—C6—C52.6 (8)C14—C13—C12—S1101.0 (7)
C2—C1—C6—C7174.1 (6)C18—C13—C12—S177.1 (8)
N1—C7—C6—C59.3 (9)C11—S1—C12—C13169.3 (6)
C8—C7—C6—C5176.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···S10.862.783.116 (6)105

Experimental details

Crystal data
Chemical formulaC18H17N7S
Mr363.45
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)187
a, b, c (Å)8.0487 (15), 5.4689 (10), 38.721 (7)
V3)1704.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.25 × 0.04
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
7815, 2854, 2592
Rint0.052
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.183, 1.20
No. of reflections2854
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.39
Absolute structureFlack (1983), with 2854 Freidel pairs
Absolute structure parameter0.05 (19)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···S10.862.7753.116 (6)105.43
 

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2006B07).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarchiesi, F., Arzeni, D., Fothergill, A. W., Falconi di Francesco, L., Caselli, F., Rinaldi, M. G. & Scalise, G. (2000). Antimicrob. Agents Chemother. 44, 226–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationColanceska-Ragenovic, K., Dimova, V., Kakurinov, V., Gabor Molnar, D. & Buzarovska, A. (2001). Molecules, 6, 815–824.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A. & Revial, G. (2008). Eur. J. Med. Chem. 43, 155–159.  Web of Science PubMed Google Scholar
First citationKhanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156–1162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem. 99, 1558–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. R., Xu, M. H. & Zhang, S. S. (2008). J. Chin. Chem. Soc. 26, 745–750.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds