organic compounds
(E)-1,2-Bis(4-methylphenyl)ethane-1,2-dione
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the molecule of the title compound, C16H14O2, a substituted benzil, the dicarbonyl unit has an s-trans conformation. This conformation is substantiated by the O—C—C—O torsion angle of 108.16 (15)°. The dihedral angle between the two aromatic rings is 72.00 (6)°. In the neighbouring molecules are linked together by weak intermolecular C—H⋯O hydrogen bonds and weak intermolecular C—H⋯π interactions. In addition, the is further stabilized by intermolecular π–π interactions with centroid–centroid distances in the range 3.6000 (8)–3.8341 (8) Å.
Related literature
For bond-length data, see Allen et al. (1987). For carbonyl–carbonyl interactions, see Allen et al. (1998). For related structures and applications, see, for example: Fun & Kia, (2008); Kaftory & Rubin, (1983); Frey et al. (1995); Crowley et al. (1983); More et al. (1987); Brown et al. (1965); Gabe et al. (1981); Kimura et al. (1979); Stevens & Dubois (1962); Shimizu & Bartlett, (1976); Rubin (1978).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808023386/at2603sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023386/at2603Isup2.hkl
The synthetic method has been described earlier (Frey et al., 1995). Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.
All of the hydrogen atoms were positioned geometrically and refined using a riding model with isotropic thermal parameters 1.2 or 1.5 times that of the parent atom.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C16H14O2 | F(000) = 504 |
Mr = 238.27 | Dx = 1.286 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2861 reflections |
a = 6.5658 (1) Å | θ = 3.0–29.0° |
b = 7.0916 (1) Å | µ = 0.08 mm−1 |
c = 26.5958 (5) Å | T = 100 K |
β = 96.473 (1)° | Block, colourless |
V = 1230.46 (3) Å3 | 0.30 × 0.22 × 0.09 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3562 independent reflections |
Radiation source: fine-focus sealed tube | 2473 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.975, Tmax = 0.993 | k = −9→9 |
15023 measured reflections | l = −37→37 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2688P] where P = (Fo2 + 2Fc2)/3 |
3562 reflections | (Δ/σ)max < 0.001 |
165 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C16H14O2 | V = 1230.46 (3) Å3 |
Mr = 238.27 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.5658 (1) Å | µ = 0.08 mm−1 |
b = 7.0916 (1) Å | T = 100 K |
c = 26.5958 (5) Å | 0.30 × 0.22 × 0.09 mm |
β = 96.473 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3562 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2473 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.993 | Rint = 0.046 |
15023 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.34 e Å−3 |
3562 reflections | Δρmin = −0.24 e Å−3 |
165 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.78303 (16) | 0.85817 (16) | 0.10574 (4) | 0.0265 (3) | |
O2 | 0.52337 (16) | 0.56364 (16) | 0.16163 (4) | 0.0284 (3) | |
C1 | 0.7563 (2) | 0.3603 (2) | 0.07576 (5) | 0.0216 (3) | |
H1A | 0.7585 | 0.3142 | 0.1086 | 0.026* | |
C2 | 0.7544 (2) | 0.2362 (2) | 0.03573 (5) | 0.0228 (3) | |
H2A | 0.7572 | 0.1071 | 0.0419 | 0.027* | |
C3 | 0.7484 (2) | 0.3022 (2) | −0.01380 (5) | 0.0211 (3) | |
C4 | 0.7468 (2) | 0.4963 (2) | −0.02211 (5) | 0.0206 (3) | |
H4A | 0.7422 | 0.5422 | −0.0550 | 0.025* | |
C5 | 0.7519 (2) | 0.6211 (2) | 0.01774 (5) | 0.0202 (3) | |
H5A | 0.7533 | 0.7502 | 0.0117 | 0.024* | |
C6 | 0.7550 (2) | 0.5541 (2) | 0.06734 (5) | 0.0193 (3) | |
C7 | 0.7559 (2) | 0.6884 (2) | 0.10961 (5) | 0.0200 (3) | |
C8 | 0.7002 (2) | 0.6162 (2) | 0.16073 (5) | 0.0210 (3) | |
C9 | 0.8525 (2) | 0.6278 (2) | 0.20558 (5) | 0.0197 (3) | |
C10 | 1.0524 (2) | 0.6905 (2) | 0.20242 (5) | 0.0216 (3) | |
H10A | 1.0934 | 0.7207 | 0.1710 | 0.026* | |
C11 | 1.1896 (2) | 0.7079 (2) | 0.24546 (5) | 0.0234 (3) | |
H11A | 1.3223 | 0.7495 | 0.2428 | 0.028* | |
C12 | 1.1314 (2) | 0.6638 (2) | 0.29296 (5) | 0.0233 (3) | |
C13 | 0.9340 (2) | 0.5956 (2) | 0.29583 (5) | 0.0237 (3) | |
H13A | 0.8949 | 0.5614 | 0.3271 | 0.028* | |
C14 | 0.7955 (2) | 0.5781 (2) | 0.25295 (5) | 0.0219 (3) | |
H14A | 0.6641 | 0.5331 | 0.2556 | 0.026* | |
C15 | 0.7434 (2) | 0.1652 (2) | −0.05715 (6) | 0.0273 (4) | |
H15A | 0.7075 | 0.2309 | −0.0885 | 0.041* | |
H15B | 0.6436 | 0.0690 | −0.0533 | 0.041* | |
H15C | 0.8761 | 0.1084 | −0.0573 | 0.041* | |
C16 | 1.2805 (3) | 0.6890 (3) | 0.33977 (6) | 0.0316 (4) | |
H16A | 1.2128 | 0.6629 | 0.3692 | 0.047* | |
H16B | 1.3302 | 0.8164 | 0.3413 | 0.047* | |
H16C | 1.3935 | 0.6038 | 0.3387 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0327 (6) | 0.0224 (6) | 0.0251 (5) | −0.0009 (5) | 0.0062 (4) | 0.0025 (5) |
O2 | 0.0246 (5) | 0.0343 (7) | 0.0271 (6) | −0.0046 (5) | 0.0065 (4) | 0.0017 (5) |
C1 | 0.0216 (7) | 0.0247 (8) | 0.0185 (6) | 0.0009 (6) | 0.0020 (5) | 0.0042 (6) |
C2 | 0.0222 (7) | 0.0208 (8) | 0.0254 (7) | 0.0003 (6) | 0.0027 (6) | 0.0019 (6) |
C3 | 0.0152 (6) | 0.0268 (8) | 0.0213 (7) | 0.0002 (6) | 0.0028 (5) | −0.0007 (6) |
C4 | 0.0160 (6) | 0.0282 (8) | 0.0178 (6) | 0.0001 (6) | 0.0020 (5) | 0.0043 (6) |
C5 | 0.0171 (6) | 0.0221 (8) | 0.0215 (7) | 0.0012 (6) | 0.0028 (5) | 0.0054 (6) |
C6 | 0.0157 (6) | 0.0233 (8) | 0.0189 (6) | 0.0003 (6) | 0.0027 (5) | 0.0021 (6) |
C7 | 0.0171 (6) | 0.0230 (8) | 0.0202 (7) | 0.0010 (6) | 0.0030 (5) | 0.0031 (6) |
C8 | 0.0245 (7) | 0.0186 (8) | 0.0205 (6) | −0.0001 (6) | 0.0060 (6) | −0.0002 (6) |
C9 | 0.0245 (7) | 0.0154 (7) | 0.0199 (6) | 0.0012 (6) | 0.0059 (5) | 0.0001 (6) |
C10 | 0.0257 (7) | 0.0211 (8) | 0.0192 (6) | 0.0011 (6) | 0.0073 (6) | 0.0022 (6) |
C11 | 0.0218 (7) | 0.0216 (8) | 0.0272 (7) | −0.0003 (6) | 0.0041 (6) | 0.0024 (6) |
C12 | 0.0308 (8) | 0.0161 (7) | 0.0226 (7) | 0.0027 (6) | 0.0007 (6) | 0.0013 (6) |
C13 | 0.0339 (8) | 0.0189 (8) | 0.0195 (7) | 0.0026 (7) | 0.0081 (6) | 0.0017 (6) |
C14 | 0.0242 (7) | 0.0191 (8) | 0.0237 (7) | −0.0004 (6) | 0.0087 (6) | 0.0005 (6) |
C15 | 0.0258 (8) | 0.0311 (9) | 0.0251 (7) | −0.0013 (7) | 0.0037 (6) | −0.0040 (7) |
C16 | 0.0381 (9) | 0.0292 (9) | 0.0261 (8) | −0.0001 (8) | −0.0032 (7) | 0.0022 (7) |
O1—C7 | 1.2231 (18) | C9—C14 | 1.3992 (18) |
O2—C8 | 1.2221 (17) | C10—C11 | 1.380 (2) |
C1—C2 | 1.380 (2) | C10—H10A | 0.9300 |
C1—C6 | 1.393 (2) | C11—C12 | 1.3960 (19) |
C1—H1A | 0.9300 | C11—H11A | 0.9300 |
C2—C3 | 1.394 (2) | C12—C13 | 1.393 (2) |
C2—H2A | 0.9300 | C12—C16 | 1.505 (2) |
C3—C4 | 1.394 (2) | C13—C14 | 1.382 (2) |
C3—C15 | 1.505 (2) | C13—H13A | 0.9300 |
C4—C5 | 1.378 (2) | C14—H14A | 0.9300 |
C4—H4A | 0.9300 | C15—H15A | 0.9600 |
C5—C6 | 1.3999 (18) | C15—H15B | 0.9600 |
C5—H5A | 0.9300 | C15—H15C | 0.9600 |
C6—C7 | 1.473 (2) | C16—H16A | 0.9600 |
C7—C8 | 1.5350 (19) | C16—H16B | 0.9600 |
C8—C9 | 1.470 (2) | C16—H16C | 0.9600 |
C9—C10 | 1.398 (2) | ||
O1···O2 | 3.1702 (15) | Cg1···Cg1ii | 3.8341 (8) |
Cg1···Cg1i | 3.6000 (8) | ||
C2—C1—C6 | 120.39 (13) | C11—C10—C9 | 120.56 (13) |
C2—C1—H1A | 119.8 | C11—C10—H10A | 119.7 |
C6—C1—H1A | 119.8 | C9—C10—H10A | 119.7 |
C1—C2—C3 | 120.77 (15) | C10—C11—C12 | 120.72 (14) |
C1—C2—H2A | 119.6 | C10—C11—H11A | 119.6 |
C3—C2—H2A | 119.6 | C12—C11—H11A | 119.6 |
C4—C3—C2 | 118.69 (13) | C13—C12—C11 | 118.59 (13) |
C4—C3—C15 | 121.12 (13) | C13—C12—C16 | 121.20 (13) |
C2—C3—C15 | 120.19 (14) | C11—C12—C16 | 120.21 (14) |
C5—C4—C3 | 120.87 (13) | C14—C13—C12 | 121.06 (13) |
C5—C4—H4A | 119.6 | C14—C13—H13A | 119.5 |
C3—C4—H4A | 119.6 | C12—C13—H13A | 119.5 |
C4—C5—C6 | 120.22 (14) | C13—C14—C9 | 120.15 (13) |
C4—C5—H5A | 119.9 | C13—C14—H14A | 119.9 |
C6—C5—H5A | 119.9 | C9—C14—H14A | 119.9 |
C1—C6—C5 | 119.05 (13) | C3—C15—H15A | 109.5 |
C1—C6—C7 | 121.06 (12) | C3—C15—H15B | 109.5 |
C5—C6—C7 | 119.89 (13) | H15A—C15—H15B | 109.5 |
O1—C7—C6 | 124.07 (12) | C3—C15—H15C | 109.5 |
O1—C7—C8 | 117.04 (13) | H15A—C15—H15C | 109.5 |
C6—C7—C8 | 118.65 (13) | H15B—C15—H15C | 109.5 |
O2—C8—C9 | 124.19 (12) | C12—C16—H16A | 109.5 |
O2—C8—C7 | 116.15 (12) | C12—C16—H16B | 109.5 |
C9—C8—C7 | 119.47 (12) | H16A—C16—H16B | 109.5 |
C10—C9—C14 | 118.86 (13) | C12—C16—H16C | 109.5 |
C10—C9—C8 | 121.78 (12) | H16A—C16—H16C | 109.5 |
C14—C9—C8 | 119.35 (13) | H16B—C16—H16C | 109.5 |
C6—C1—C2—C3 | −0.9 (2) | O1—C7—C8—C9 | −67.01 (18) |
C1—C2—C3—C4 | 0.8 (2) | C6—C7—C8—C9 | 118.41 (15) |
C1—C2—C3—C15 | −179.15 (13) | O2—C8—C9—C10 | −179.46 (15) |
C2—C3—C4—C5 | 0.3 (2) | C7—C8—C9—C10 | −4.7 (2) |
C15—C3—C4—C5 | −179.83 (13) | O2—C8—C9—C14 | −0.6 (2) |
C3—C4—C5—C6 | −1.2 (2) | C7—C8—C9—C14 | 174.18 (13) |
C2—C1—C6—C5 | 0.0 (2) | C14—C9—C10—C11 | −1.8 (2) |
C2—C1—C6—C7 | 179.66 (13) | C8—C9—C10—C11 | 177.11 (14) |
C4—C5—C6—C1 | 1.0 (2) | C9—C10—C11—C12 | −0.1 (2) |
C4—C5—C6—C7 | −178.64 (12) | C10—C11—C12—C13 | 2.2 (2) |
C1—C6—C7—O1 | 169.54 (14) | C10—C11—C12—C16 | −178.16 (14) |
C5—C6—C7—O1 | −10.8 (2) | C11—C12—C13—C14 | −2.3 (2) |
C1—C6—C7—C8 | −16.28 (19) | C16—C12—C13—C14 | 178.02 (14) |
C5—C6—C7—C8 | 163.39 (12) | C12—C13—C14—C9 | 0.4 (2) |
O1—C7—C8—O2 | 108.17 (16) | C10—C9—C14—C13 | 1.6 (2) |
C6—C7—C8—O2 | −66.42 (18) | C8—C9—C14—C13 | −177.28 (13) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1iii | 0.93 | 2.44 | 3.2573 (18) | 146 |
C14—H14A···Cg2iv | 0.93 | 2.94 | 3.6105 (15) | 130 |
Symmetry codes: (iii) x, y−1, z; (iv) −x+3/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H14O2 |
Mr | 238.27 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 6.5658 (1), 7.0916 (1), 26.5958 (5) |
β (°) | 96.473 (1) |
V (Å3) | 1230.46 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.30 × 0.22 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.975, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15023, 3562, 2473 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.129, 1.05 |
No. of reflections | 3562 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
O1—C7 | 1.2231 (18) | C7—C8 | 1.5350 (19) |
O2—C8 | 1.2221 (17) | ||
O1···O2 | 3.1702 (15) | Cg1···Cg1ii | 3.8341 (8) |
Cg1···Cg1i | 3.6000 (8) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1iii | 0.9300 | 2.4400 | 3.2573 (18) | 146.00 |
C14—H14A···Cg2iv | 0.9300 | 2.9400 | 3.6105 (15) | 130.00 |
Symmetry codes: (iii) x, y−1, z; (iv) −x+3/2, y−1/2, −z+1/2. |
Footnotes
‡Additional correspondance author, e-mail: zsrkk@yahoo.com.
Acknowledgements
HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.
References
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Brown, C. J. & Sadanaga, R. (1965). Acta Cryst. 18, 158–164. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crowley, J. I., Balanson, R. D. & Mayerle, J. J. (1983). J. Am. Chem. Soc. 105, 6416–6422. CSD CrossRef CAS Web of Science Google Scholar
Frey, J., Faraggi, E., Rappoport, Z. & Kaftory, M. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1745–1748. CrossRef Google Scholar
Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1617. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Lee, F. L. & Barclay, L. R. C. (1981). Acta Cryst. B37, 197–200. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaftory, M. & Rubin, M. B. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 149–154. CrossRef Google Scholar
Kimura, M., McCluney, R. E. & Watson, W. H. (1979). Acta Cryst. B35, 483–484. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
More, M., Odou, G. & Lefebvre, J. (1987). Acta Cryst. B43, 398–405. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rubin, M. B. (1978). Chem. Rev. 78, 1121–1164. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimizu, N. & Bartlett, P. D. (1976). J. Am. Chem. Soc. 98, 4193–4200. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stevens, B. & Dubois, J. T. (1962). J. Chem. Soc. pp. 2813–2815. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Investigation of the photophysical properties of the α-dicarbonyls has focused on the intramolecular carbonyl group electronic interaction as a function of their geometrical relationship. As in previous extensive studies of the photochemistry (Stevens & Dubois, 1962; Shimizu & Bartlett, 1976) of these compounds, biacetyl and benzil were the exclusive experimental vehicles for photophysical study. The structure of vicinal di- and polycarbonyl compounds have been of interest for many years (Rubin, 1978; Crowley et al., 1983; Kaftory et al., 1983; Frey et al., 1995; Kimura et al., 1979). Only a limited amount of data has been gathered from solid-state configurations such as in single crystals or as inclusion dopants in host crystals.
In the title compound (I) (Fig.1), bond lengths, bond angles, and torsion angles of the dicarbonyl unit deviate significantly from normal values (Allen et al., 1987) in order to minimize the repulsive interactions resulting from juxtaposition of dipolar carbonyl groups (Allen et al., 1987). The C7–C8 bond distance connecting the carbonyl units is longer than those in normally sp2–sp2 single bonds, such as in butadiene. This is probably the result of decreasing the unfavourable vicinal dipole-dipole interactions. The dicarbonyl unit has s-trans conformation as can be indicated by the torsion angles of O1–C7–C6–C1, and O2–C8–C9–C10 being 169.55 (13) and 179.45 (14)°, respectively. This conformation is substantiated by the torsion angle of O–C–C–O, being 108.16 (15)°. The overal effect is to maximize the distance between the two electronegative oxygen atoms [O1···O2 = 3.1702 (15) Å] and to allow orbital overlap of the dione with the π system of the benzene rings. The dihedral angle between two phenyl rings is 64.74 (5)°. In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H···O hydrogen bond and weak intermolecular C—H···π interaction. The packing mode (Fig. 2) tend to be dominated by van der Wwaals close packing considerations and the preference for aligning the substituted phenyl rings parallel to each other along the a axis at about 3.6000 (8) – 3.8341 (8) Å.