organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,3-Di-O-acetyl-4-chloro-4-de­­oxy-6-O-tosyl-β-D-galacto­pyranos­yl)propan-2-one methanol 0.25-solvate

aInstitute of Pharmacy, Henan University, Kaifeng, Henan 475001, People's Republic of China, and bNew Drug Research and Development Center, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
*Correspondence e-mail: yanlin0378@163.com

(Received 27 March 2008; accepted 16 July 2008; online 19 July 2008)

The asymmetric unit of the title solvate, C20H25ClO9S·0.25CH3OH, contains one galactopyranosyl derivative and one-quarter of a methanol solvent mol­ecule. The galactopyran­ose ring is in the usual 4C1 conformation, and the anomeric center of the sugar has a β configuration. The value of θ (3.44°) and the range of torsion angles [or 53.1 (5)–63.0 (5)°] reflect a slight distortion of the 4C1 pyran­ose ring. A minor orientational disorder affects a carbonyl group, which was modeled with two sites for the O atom having occupancies of 0.79 (5) and 0.21 (5). The crystal studied exhibited inversion twinning.

Related literature

For related literature, see: Lewis et al. (1982[Lewis, M. D., Cha, J. K. & Kishi, Y. (1982). J. Am. Chem. Soc. 104, 4976-4978.]); Nicolaou et al. (1995[Nicolaou, K. C., Theodorakis, E. A., Rutjes, F. P. J. T., Tiebes, J., Sato, M., Untersteller, E. & Xiao, X.-Y. (1995). J. Am. Chem. Soc. 117, 1171-1172.]); Paterson & Mansuri (1985[Paterson, I. & Mansuri, M. M. (1985). Tetrahedron, 41, 3569-3624.]); Postema (1992[Postema, M. H. D. (1992). Tetrahedron, 48, 8545-8599.]); Tvaroška et al. (2002[Tvaroška, I., Taravel, F. R., Utille, J. P. & Carver, J. P. (2002). Carbohydr. Res. 337, 353-367.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25ClO9S·0.25CH4O

  • Mr = 484.92

  • Orthorhombic, P 21 21 21

  • a = 7.3300 (15) Å

  • b = 14.608 (3) Å

  • c = 22.329 (5) Å

  • V = 2390.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.954

  • 7242 measured reflections

  • 4129 independent reflections

  • 3274 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.154

  • S = 1.00

  • 4129 reflections

  • 304 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1683 Friedel pairs

  • Flack parameter: 0.42 (11)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to their unique chemical and enzymatic hydrolysis stability, C-glycosides are becoming useful building blocks (Postema, 1992) for the total synthesis of various types of natural products such as palytoxin (Lewis et al., 1982), brevetoxin (Nicolaou et al., 1995) and polyether antibiotics (Paterson & Mansuri, 1985), and are used as a model in enzymatic and metabolic studies as well. Despite this attractive applications, structural investigations by using single-crystal X-ray analysis, which provides unambiguous structural data, are rare. Herein we report the design and synthesis of an acylated C-glycosidic analog, which would be of great interest in order to get additional crystallographic information about the substrate.

In the orthorhombic crystals of the title compound, the asymmetric unit contains one molecule and 0.25 methanol solvate. No significant hydrogen bonds exist in the crystal. The value of θ (3.44°) and the magnitude of the torsion angles in the ring (52.9–63.6°) reveal that the 4C1 pyranose ring presents a slight distortion. The primary hydroxyl group in the title compound is in the gt position [O1—C5—C6—O7 = 74.9 (5)°], which is known to be the favored orientation for pyranose with the galacto configuration (Tvaroška et al., 2002).

Related literature top

For related literature, see: Lewis et al. (1982); Nicolaou et al. (1995); Paterson & Mansuri (1985); Postema (1992); Tvaroška et al. (2002).

Experimental top

All reagents were commercially available and of analytical grade. Sulfonylation of 1-(4-chloro-4-deoxy-β-D-galactopyranosyl)-propan-2-one with toluene-4-sulfonyl chloride in dry pyridine afforded the 6-toluenesulfonylated intermediate. Further acetylation with acetyl anhydride in pyridine and subsequent purification by chromatography on silica gel furnished the title compound as a white solid. White crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from methanol.

Refinement top

All H atoms bonded to C atoms were positioned geometrically and refined as riding to their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). For the methanol molecule, the hydroxyl H atom was positioned geometrically and refined as riding with O—H = 0.82Å and Uiso(H) = 1.5Ueq(O). Assuming that starting material is enantiomerically pure, and that anomalous dispersion effects from S and Cl atoms are significant, we suppose that the refined Flack parameter, 0.42 (11) based on 1683 measured Friedel pairs, reflects a partial twinning by merohedry for the sample used for data collection.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing atom displacement ellipsoids drawn at the 50% probability level.
1-(2,3-Di-O-acetyl-4-chloro-4-deoxy-6-O-tosyl-β-D- galactopyranosyl)propan-2-one methanol 0.25-solvate top
Crystal data top
C20H25ClO9S·0.25CH4OF(000) = 1018
Mr = 484.92Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 399 reflections
a = 7.3300 (15) Åθ = 2–25.1°
b = 14.608 (3) ŵ = 0.29 mm1
c = 22.329 (5) ÅT = 291 K
V = 2390.9 (8) Å3Prism, colourless
Z = 40.20 × 0.17 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4129 independent reflections
Radiation source: fine-focus sealed tube3274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
0.3° wide ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.944, Tmax = 0.954k = 1717
7242 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.6536P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4129 reflectionsΔρmax = 0.19 e Å3
304 parametersΔρmin = 0.29 e Å3
2 restraintsAbsolute structure: Flack (1983), 1683 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (11)
Crystal data top
C20H25ClO9S·0.25CH4OV = 2390.9 (8) Å3
Mr = 484.92Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3300 (15) ŵ = 0.29 mm1
b = 14.608 (3) ÅT = 291 K
c = 22.329 (5) Å0.20 × 0.17 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3274 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.954Rint = 0.052
7242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.29 e Å3
4129 reflectionsAbsolute structure: Flack (1983), 1683 Friedel pairs
304 parametersAbsolute structure parameter: 0.42 (11)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.32977 (15)0.92085 (8)0.03975 (5)0.0411 (3)
Cl10.65974 (18)1.05079 (11)0.24709 (5)0.0662 (4)
O10.7356 (4)1.1010 (2)0.11261 (14)0.0425 (7)
O20.8839 (8)1.1761 (3)0.01365 (18)0.0918 (16)
O31.1793 (4)1.1764 (2)0.16930 (14)0.0481 (8)
O41.113 (5)1.3083 (19)0.2077 (18)0.054 (11)0.21 (5)
O4'1.132 (2)1.2846 (17)0.2385 (15)0.137 (9)0.79 (5)
O51.0691 (4)1.0491 (2)0.25895 (13)0.0512 (8)
O61.2341 (6)0.9227 (3)0.2414 (2)0.0779 (12)
O70.5241 (4)0.9533 (2)0.06115 (13)0.0453 (8)
O80.3338 (5)0.9324 (2)0.02346 (13)0.0599 (9)
O90.1958 (4)0.9671 (2)0.07483 (15)0.0507 (8)
O101.184 (7)1.295 (3)0.3532 (19)0.205 (15)*0.25
H101.11331.29160.32500.308*0.25
C10.9128 (6)1.1430 (3)0.1106 (2)0.0389 (10)
H1A0.99241.10710.08430.047*
C20.9930 (6)1.1440 (3)0.17380 (19)0.0384 (10)
H2A0.92111.18340.20030.046*
C31.0018 (6)1.0463 (3)0.19808 (18)0.0400 (10)
H3A1.08801.01120.17360.048*
C40.8168 (7)1.0005 (3)0.19472 (19)0.0425 (10)
H4A0.83160.93560.20470.051*
C50.7433 (7)1.0076 (3)0.1312 (2)0.0423 (11)
H5A0.82570.97450.10430.051*
C60.5551 (7)0.9680 (4)0.1250 (2)0.0528 (13)
H6A0.54640.91050.14660.063*
H6B0.46491.01000.14100.063*
C70.8895 (7)1.2381 (3)0.0847 (2)0.0525 (12)
H7A0.99111.27570.09790.063*
H7B0.77901.26470.10120.063*
C80.8787 (7)1.2427 (4)0.0170 (2)0.0544 (13)
C90.8655 (10)1.3370 (4)0.0087 (3)0.0760 (18)
H9A0.85241.33310.05140.114*
H9B0.97421.37060.00080.114*
H9C0.76151.36770.00800.114*
C101.2286 (8)1.2513 (4)0.1997 (4)0.0768 (19)
C111.4220 (9)1.2763 (5)0.1873 (4)0.101 (3)
H11A1.44641.33630.20290.152*
H11B1.44301.27590.14490.152*
H11C1.50141.23270.20630.152*
C121.1872 (7)0.9807 (4)0.2751 (2)0.0527 (12)
C131.2456 (10)0.9929 (6)0.3384 (3)0.093 (2)
H13A1.35390.95770.34570.139*
H13B1.15020.97260.36470.139*
H13C1.27051.05650.34580.139*
C140.3198 (6)0.8038 (3)0.05653 (18)0.0417 (10)
C150.2354 (7)0.7735 (3)0.1088 (2)0.0492 (12)
H15A0.19120.81510.13680.059*
C160.2191 (8)0.6808 (3)0.1182 (2)0.0557 (13)
H16A0.16280.66050.15310.067*
C170.2823 (7)0.6174 (3)0.0783 (2)0.0524 (13)
C180.3687 (7)0.6498 (4)0.0270 (3)0.0593 (14)
H18A0.41580.60770.00020.071*
C190.3868 (7)0.7414 (4)0.0151 (2)0.0547 (13)
H19A0.44290.76130.01990.066*
C200.2580 (10)0.5161 (4)0.0872 (3)0.0769 (18)
H20A0.23530.50370.12880.115*
H20B0.36660.48470.07480.115*
H20D0.15650.49520.06370.115*
C211.292 (6)1.229 (3)0.3514 (17)0.135 (14)*0.25
H21A1.27691.19240.38660.202*0.25
H21B1.41491.25180.34960.202*0.25
H21C1.26721.19300.31640.202*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0419 (6)0.0444 (6)0.0369 (5)0.0053 (5)0.0003 (5)0.0019 (5)
Cl10.0561 (7)0.1008 (11)0.0417 (6)0.0185 (8)0.0082 (6)0.0121 (6)
O10.0387 (16)0.0413 (18)0.0476 (18)0.0039 (13)0.0022 (14)0.0046 (14)
O20.167 (5)0.053 (2)0.055 (2)0.008 (3)0.020 (3)0.002 (2)
O30.0376 (16)0.0496 (18)0.0570 (19)0.0041 (16)0.0007 (15)0.0052 (15)
O40.062 (14)0.026 (14)0.07 (2)0.006 (9)0.013 (12)0.011 (12)
O4'0.086 (6)0.121 (12)0.20 (2)0.026 (7)0.017 (10)0.107 (14)
O50.0522 (18)0.065 (2)0.0363 (18)0.0044 (17)0.0092 (14)0.0027 (16)
O60.078 (3)0.083 (3)0.073 (3)0.026 (2)0.012 (2)0.003 (2)
O70.0475 (17)0.057 (2)0.0314 (16)0.0150 (16)0.0000 (13)0.0044 (15)
O80.069 (2)0.075 (2)0.0353 (17)0.013 (2)0.0064 (16)0.0054 (15)
O90.0485 (18)0.0431 (18)0.060 (2)0.0050 (15)0.0037 (16)0.0022 (15)
C10.041 (2)0.032 (2)0.044 (3)0.0023 (19)0.0048 (19)0.005 (2)
C20.035 (2)0.042 (3)0.039 (2)0.0004 (19)0.0023 (18)0.002 (2)
C30.044 (2)0.046 (3)0.030 (2)0.000 (2)0.0017 (18)0.002 (2)
C40.051 (3)0.037 (2)0.039 (2)0.006 (2)0.002 (2)0.0006 (18)
C50.046 (3)0.043 (3)0.037 (2)0.006 (2)0.0000 (19)0.0007 (19)
C60.055 (3)0.061 (3)0.042 (3)0.024 (3)0.002 (2)0.004 (2)
C70.058 (3)0.043 (3)0.056 (3)0.001 (2)0.000 (2)0.002 (2)
C80.056 (3)0.045 (3)0.062 (3)0.008 (2)0.009 (2)0.014 (3)
C90.089 (4)0.054 (3)0.085 (4)0.001 (3)0.020 (4)0.027 (3)
C100.051 (3)0.054 (4)0.125 (6)0.007 (3)0.004 (4)0.033 (4)
C110.060 (4)0.079 (5)0.166 (8)0.026 (3)0.006 (4)0.015 (5)
C120.040 (3)0.069 (3)0.049 (3)0.004 (3)0.003 (2)0.012 (3)
C130.089 (5)0.139 (6)0.050 (3)0.041 (5)0.013 (3)0.006 (4)
C140.037 (2)0.048 (2)0.040 (2)0.006 (2)0.001 (2)0.0071 (19)
C150.061 (3)0.047 (3)0.040 (3)0.000 (2)0.001 (2)0.004 (2)
C160.077 (4)0.044 (3)0.046 (3)0.002 (2)0.004 (3)0.000 (2)
C170.056 (3)0.043 (3)0.059 (3)0.001 (2)0.021 (3)0.006 (2)
C180.048 (3)0.052 (3)0.077 (4)0.008 (2)0.000 (3)0.030 (3)
C190.051 (3)0.055 (3)0.059 (3)0.004 (2)0.010 (2)0.019 (3)
C200.090 (4)0.041 (3)0.099 (5)0.003 (3)0.032 (4)0.003 (3)
Geometric parameters (Å, º) top
S1—O81.422 (3)C7—H7A0.9700
S1—O91.427 (3)C7—H7B0.9700
S1—O71.576 (3)C8—C91.496 (7)
S1—C141.753 (5)C9—H9A0.9600
Cl1—C41.798 (5)C9—H9B0.9600
O1—C51.426 (5)C9—H9C0.9600
O1—C11.437 (5)C10—C111.490 (8)
O2—C81.189 (7)C11—H11A0.9600
O3—C101.337 (6)C11—H11B0.9600
O3—C21.449 (5)C11—H11C0.9600
O4—C101.20 (4)C12—C131.488 (8)
O4'—C101.222 (16)C13—H13A0.9600
O5—C121.370 (6)C13—H13B0.9600
O5—C31.447 (5)C13—H13C0.9600
O6—C121.184 (6)C14—C191.388 (6)
O7—C61.459 (6)C14—C151.393 (6)
O10—C211.24 (5)C15—C161.375 (7)
O10—H100.8200C15—H15A0.9300
C1—C71.515 (6)C16—C171.367 (7)
C1—C21.530 (6)C16—H16A0.9300
C1—H1A0.9800C17—C181.392 (7)
C2—C31.527 (6)C17—C201.503 (8)
C2—H2A0.9800C18—C191.371 (8)
C3—C41.514 (7)C18—H18A0.9300
C3—H3A0.9800C19—H19A0.9300
C4—C51.521 (6)C20—H20A0.9600
C4—H4A0.9800C20—H20B0.9600
C5—C61.503 (6)C20—H20D0.9600
C5—H5A0.9800C21—H21A0.9600
C6—H6A0.9700C21—H21B0.9600
C6—H6B0.9700C21—H21C0.9600
C7—C81.516 (7)
O8—S1—O9120.2 (2)C8—C9—H9B109.5
O8—S1—O7104.3 (2)H9A—C9—H9B109.5
O9—S1—O7108.28 (18)C8—C9—H9C109.5
O8—S1—C14109.2 (2)H9A—C9—H9C109.5
O9—S1—C14108.4 (2)H9B—C9—H9C109.5
O7—S1—C14105.4 (2)O4—C10—O4'37.7 (13)
C5—O1—C1112.4 (3)O4—C10—O3116.9 (17)
C10—O3—C2119.2 (4)O4'—C10—O3122.0 (8)
C12—O5—C3116.3 (4)O4—C10—C11121.9 (16)
C6—O7—S1118.8 (3)O4'—C10—C11125.9 (8)
C21—O10—H10109.5O3—C10—C11111.3 (6)
O1—C1—C7107.6 (4)C10—C11—H11A109.5
O1—C1—C2108.8 (3)C10—C11—H11B109.5
C7—C1—C2112.7 (4)H11A—C11—H11B109.5
O1—C1—H1A109.2C10—C11—H11C109.5
C7—C1—H1A109.2H11A—C11—H11C109.5
C2—C1—H1A109.2H11B—C11—H11C109.5
O3—C2—C3106.9 (3)O6—C12—O5122.5 (5)
O3—C2—C1107.6 (3)O6—C12—C13127.3 (5)
C3—C2—C1109.5 (3)O5—C12—C13110.1 (5)
O3—C2—H2A110.9C12—C13—H13A109.5
C3—C2—H2A110.9C12—C13—H13B109.5
C1—C2—H2A110.9H13A—C13—H13B109.5
O5—C3—C4111.4 (3)C12—C13—H13C109.5
O5—C3—C2108.8 (3)H13A—C13—H13C109.5
C4—C3—C2111.0 (4)H13B—C13—H13C109.5
O5—C3—H3A108.6C19—C14—C15120.5 (4)
C4—C3—H3A108.6C19—C14—S1118.9 (4)
C2—C3—H3A108.6C15—C14—S1120.5 (3)
C3—C4—C5109.5 (4)C16—C15—C14118.6 (5)
C3—C4—Cl1111.1 (3)C16—C15—H15A120.7
C5—C4—Cl1110.6 (3)C14—C15—H15A120.7
C3—C4—H4A108.5C17—C16—C15122.6 (5)
C5—C4—H4A108.5C17—C16—H16A118.7
Cl1—C4—H4A108.5C15—C16—H16A118.7
O1—C5—C6107.8 (4)C16—C17—C18117.5 (5)
O1—C5—C4110.5 (4)C16—C17—C20122.7 (6)
C6—C5—C4112.7 (4)C18—C17—C20119.8 (5)
O1—C5—H5A108.6C19—C18—C17122.3 (4)
C6—C5—H5A108.6C19—C18—H18A118.8
C4—C5—H5A108.6C17—C18—H18A118.8
O7—C6—C5106.9 (4)C18—C19—C14118.6 (5)
O7—C6—H6A110.4C18—C19—H19A120.7
C5—C6—H6A110.4C14—C19—H19A120.7
O7—C6—H6B110.4C17—C20—H20A109.5
C5—C6—H6B110.4C17—C20—H20B109.5
H6A—C6—H6B108.6H20A—C20—H20B109.5
C1—C7—C8115.2 (4)C17—C20—H20D109.5
C1—C7—H7A108.5H20A—C20—H20D109.5
C8—C7—H7A108.5H20B—C20—H20D109.5
C1—C7—H7B108.5O10—C21—H21A109.5
C8—C7—H7B108.5O10—C21—H21B109.5
H7A—C7—H7B107.5H21A—C21—H21B109.5
O2—C8—C9122.3 (5)O10—C21—H21C109.5
O2—C8—C7122.5 (5)H21A—C21—H21C109.5
C9—C8—C7115.2 (5)H21B—C21—H21C109.5
C8—C9—H9A109.5
O8—S1—O7—C6167.7 (4)O1—C5—C6—O774.9 (5)
O9—S1—O7—C638.6 (4)C4—C5—C6—O7162.9 (4)
C14—S1—O7—C677.2 (4)O1—C1—C7—C881.7 (5)
C5—O1—C1—C7174.6 (4)C2—C1—C7—C8158.4 (4)
C5—O1—C1—C263.0 (5)C1—C7—C8—O21.7 (8)
C10—O3—C2—C3121.1 (5)C1—C7—C8—C9177.0 (5)
C10—O3—C2—C1121.3 (5)C2—O3—C10—O431 (2)
O1—C1—C2—O3173.3 (3)C2—O3—C10—O4'12 (2)
C7—C1—C2—O367.5 (5)C2—O3—C10—C11177.5 (5)
O1—C1—C2—C357.5 (4)C3—O5—C12—O60.8 (7)
C7—C1—C2—C3176.7 (4)C3—O5—C12—C13179.5 (5)
C12—O5—C3—C496.5 (4)O8—S1—C14—C1925.0 (5)
C12—O5—C3—C2140.9 (4)O9—S1—C14—C19157.6 (4)
O3—C2—C3—O566.7 (4)O7—S1—C14—C1986.6 (4)
C1—C2—C3—O5177.1 (3)O8—S1—C14—C15151.0 (4)
O3—C2—C3—C4170.5 (3)O9—S1—C14—C1518.4 (4)
C1—C2—C3—C454.3 (5)O7—S1—C14—C1597.4 (4)
O5—C3—C4—C5174.4 (4)C19—C14—C15—C160.5 (7)
C2—C3—C4—C553.1 (5)S1—C14—C15—C16175.4 (4)
O5—C3—C4—Cl152.0 (5)C14—C15—C16—C170.0 (8)
C2—C3—C4—Cl169.4 (4)C15—C16—C17—C181.1 (8)
C1—O1—C5—C6173.7 (4)C15—C16—C17—C20177.5 (5)
C1—O1—C5—C462.8 (5)C16—C17—C18—C191.8 (8)
C3—C4—C5—O156.3 (5)C20—C17—C18—C19176.8 (5)
Cl1—C4—C5—O166.5 (4)C17—C18—C19—C141.3 (8)
C3—C4—C5—C6176.9 (4)C15—C14—C19—C180.2 (7)
Cl1—C4—C5—C654.2 (5)S1—C14—C19—C18176.2 (4)
S1—O7—C6—C5174.1 (3)

Experimental details

Crystal data
Chemical formulaC20H25ClO9S·0.25CH4O
Mr484.92
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)7.3300 (15), 14.608 (3), 22.329 (5)
V3)2390.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.944, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
7242, 4129, 3274
Rint0.052
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.00
No. of reflections4129
No. of parameters304
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.29
Absolute structureFlack (1983), 1683 Friedel pairs
Absolute structure parameter0.42 (11)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This work was financially supported by the NNSF of the People's Republic of China (No. 20572103).

References

First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLewis, M. D., Cha, J. K. & Kishi, Y. (1982). J. Am. Chem. Soc. 104, 4976–4978.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., Theodorakis, E. A., Rutjes, F. P. J. T., Tiebes, J., Sato, M., Untersteller, E. & Xiao, X.-Y. (1995). J. Am. Chem. Soc. 117, 1171–1172.  CSD CrossRef CAS Web of Science Google Scholar
First citationPaterson, I. & Mansuri, M. M. (1985). Tetrahedron, 41, 3569–3624.  CrossRef CAS Web of Science Google Scholar
First citationPostema, M. H. D. (1992). Tetrahedron, 48, 8545–8599.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTvaroška, I., Taravel, F. R., Utille, J. P. & Carver, J. P. (2002). Carbohydr. Res. 337, 353–367.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds