metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-1κ2O-bis­[μ3-2-(1H-tetra­zol-5-yl)benzoato(2−)]dicadmium(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 17 May 2008; accepted 3 July 2008; online 9 July 2008)

The title compound, [Cd2(C8H4N4O2)2(H2O)2]n, is a coordination polymer prepared by the hydro­thermal reaction of cadmium(II) chloride and 2-(1H-tetra­zol-5-yl)benzoic acid. Two types of coordinated cadmium cations exist in the structure. One is located on a twofold axis and is coordinated by four O and two N atoms from four symmetry-related ligands, forming a trigonal-prismatic coordination polyhedron. The other is located on an inversion center and is octa­hedrally coordinated by two N and two O atoms from two ligands in equatorial sites, and two water mol­ecules in axial sites. The organic ligand bridges three Cd atoms, through a carboxyl­ate group and two N atoms of the tetra­zolate unit. This mode of coordination results in a two-dimensional framework. The crystal structure is stabilized by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the chemistry of tetra­zole derivatives, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Xue et al. (2002[Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.]); Dunica et al. (1991[Dunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem. 56, 2395-2400.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wittenberger et al. (1993[Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.]); Hu et al. (2007[Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C8H4N4O2)2(H2O)2]

  • Mr = 637.16

  • Monoclinic, C 2/c

  • a = 19.886 (4) Å

  • b = 7.3522 (15) Å

  • c = 15.409 (3) Å

  • β = 115.97 (3)°

  • V = 2025.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 293 (2) K

  • 0.35 × 0.30 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.473, Tmax = 0.809

  • 8913 measured reflections

  • 1976 independent reflections

  • 1922 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.13

  • 1976 reflections

  • 156 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.75 (4) 2.06 (4) 2.758 (2) 156 (4)
O1W—H2W⋯N2ii 0.87 (4) 2.14 (4) 2.961 (3) 155 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Coordination frameworks have received much attention over the past decade because of their potential applications. Multifunctional organic ligands are necessary to construct such frameworks. 2-(1H-tetrazol-5-yl)benzoic acid is a ligand with two functional groups, one carboxylate group and one tetrazole ring. Tetrazole compounds have a wide range of applications in coordination chemistry, medicinal chemistry and material science (Hu et al., 2007; Xiong et al., 2002; Xue et al., 2002; Wang et al., 2005; Dunica et al., 1991; Wittenberger et al., 1993). We report here the crystal structure of the title compound, which was obtained by the hydrothermal reaction of cadmium chloride and 2-(1H-tetrazol-5-yl)benzoic acid.

In the structure of this compound, two types of coordinated cadmium cations exist (Fig. 1). Cd1 is located on a 2-fold rotation axis, and is trigonal prismatically coordinated by two O and two N from four different ligands. While Cd2 is loacated on an inversion center, and is octahedrally coordinated by two N and two O from two ligands at equatorial sites, and two O atoms of H2O at axial sites. The organic ligand bridges three Cd atoms by coordinating one Cd atom through one N atom from the tetrazole unit, by coordinating the other Cd atom through one O atom and one µ3-O from the carboxylate unit, and by coordinating a third Cd atom through a N atom from the tetrazole unit and one µ3-O from the carboxylate unit. Such an arrangement makes Cd1 and Cd2 bridged by one µ3-O carboxylate group and the tetrazole unit, resulting in a two-dimensional framework (Fig. 2). The crystal structure is stabilized by intermolecular O—H···O and O—H···N hydrogen bonds (Table 1).

Related literature top

For the chemistry of tetrazole derivatives, see: Xiong et al. (2002); Xue et al. (2002); Dunica et al. (1991); Wang et al. (2005); Wittenberger et al. (1993); Hu et al. (2007).

Experimental top

A mixture of CdCl2 (0.2 mmol) and 2-(1H-tetrazol-5-yl)benzoic acid (0.2 mmol) in H2O (4 ml) was heated in a Pyrex tube at 373 K for two days. After slowly cooling down to room temperature over a period of 12 h., colourless crystals of the title compound suitable for diffraction were isolated.

Refinement top

Water H atoms were found in a difference map and refined freely. Other H atoms positions were calculated geometrically and these H atoms were allowed to ride on their carrier C atoms with C—H = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, -y + 1, -z; (B) -x, +y, 1/2 - z; (C) +x, +y - 1, +z; (D) -x, +y - 1, 1/2 - z.]
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis. No displacement parameters are displayed and H atoms have been omitted for clarity.
(I) top
Crystal data top
[Cd2(C8H4N4O2)2(H2O)2]F(000) = 1232
Mr = 637.16Dx = 2.090 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 0 reflections
a = 19.886 (4) Åθ = 3.1–27.5°
b = 7.3522 (15) ŵ = 2.15 mm1
c = 15.409 (3) ÅT = 293 K
β = 115.97 (3)°Block, colourless
V = 2025.4 (7) Å30.35 × 0.30 × 0.10 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
1976 independent reflections
Radiation source: fine-focus sealed tube1922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD Profile fitting scansh = 2424
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.473, Tmax = 0.809l = 1818
8913 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0214P)2 + 3.1517P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1976 reflectionsΔρmax = 0.36 e Å3
156 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00235 (14)
Crystal data top
[Cd2(C8H4N4O2)2(H2O)2]V = 2025.4 (7) Å3
Mr = 637.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.886 (4) ŵ = 2.15 mm1
b = 7.3522 (15) ÅT = 293 K
c = 15.409 (3) Å0.35 × 0.30 × 0.10 mm
β = 115.97 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1976 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1922 reflections with I > 2σ(I)
Tmin = 0.473, Tmax = 0.809Rint = 0.029
8913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.36 e Å3
1976 reflectionsΔρmin = 0.42 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.21274 (3)0.25000.02355 (9)
Cd20.00000.50000.00000.02567 (9)
O10.05131 (10)0.4374 (2)0.16197 (11)0.0376 (4)
O1W0.11318 (10)0.6113 (3)0.00533 (13)0.0352 (4)
H1W0.115 (2)0.579 (5)0.040 (3)0.063 (11)*
H2W0.115 (2)0.730 (6)0.006 (3)0.071 (11)*
O20.09395 (10)0.4136 (2)0.31727 (11)0.0361 (4)
N10.01798 (10)1.0095 (2)0.13491 (13)0.0239 (4)
N20.08259 (11)1.0024 (2)0.05335 (14)0.0303 (4)
N30.08190 (11)0.8588 (3)0.00480 (13)0.0319 (4)
N40.01705 (10)0.7689 (2)0.05357 (13)0.0264 (4)
C10.12913 (12)0.6784 (3)0.26098 (15)0.0235 (4)
C20.09950 (11)0.8385 (3)0.20847 (14)0.0223 (4)
C30.14406 (14)0.9941 (3)0.23224 (17)0.0308 (5)
H30.12531.10030.19710.037*
C40.21556 (14)0.9938 (3)0.3061 (2)0.0409 (6)
H40.24441.09890.32080.049*
C50.24392 (14)0.8370 (4)0.3581 (2)0.0450 (6)
H50.29210.83610.40820.054*
C60.20091 (13)0.6821 (3)0.33610 (17)0.0361 (5)
H60.22030.57720.37220.043*
C70.08845 (12)0.5008 (3)0.24438 (16)0.0225 (4)
C80.02201 (11)0.8642 (3)0.13370 (14)0.0204 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03345 (14)0.01501 (12)0.01947 (13)0.0000.00909 (9)0.000
Cd20.03771 (15)0.01834 (13)0.01698 (13)0.00252 (8)0.00830 (10)0.00369 (7)
O10.0559 (11)0.0246 (8)0.0209 (8)0.0100 (8)0.0062 (7)0.0002 (6)
O1W0.0392 (10)0.0341 (10)0.0287 (9)0.0054 (7)0.0116 (7)0.0008 (7)
O20.0511 (10)0.0304 (9)0.0210 (7)0.0135 (8)0.0105 (7)0.0019 (6)
N10.0276 (9)0.0179 (8)0.0205 (9)0.0017 (7)0.0052 (7)0.0029 (6)
N20.0298 (10)0.0247 (10)0.0277 (10)0.0045 (7)0.0047 (8)0.0028 (7)
N30.0328 (10)0.0261 (10)0.0259 (9)0.0037 (8)0.0028 (8)0.0050 (8)
N40.0298 (9)0.0218 (9)0.0214 (9)0.0027 (7)0.0053 (7)0.0048 (7)
C10.0256 (10)0.0215 (10)0.0223 (10)0.0005 (8)0.0095 (8)0.0014 (8)
C20.0256 (10)0.0211 (10)0.0204 (10)0.0008 (8)0.0102 (8)0.0019 (8)
C30.0334 (13)0.0233 (11)0.0325 (13)0.0042 (9)0.0113 (10)0.0011 (8)
C40.0319 (13)0.0332 (13)0.0482 (16)0.0132 (10)0.0090 (11)0.0041 (10)
C50.0262 (12)0.0430 (14)0.0456 (15)0.0062 (11)0.0029 (10)0.0007 (12)
C60.0295 (12)0.0306 (12)0.0352 (13)0.0011 (10)0.0022 (10)0.0063 (10)
C70.0242 (11)0.0199 (10)0.0212 (11)0.0029 (7)0.0077 (9)0.0006 (7)
C80.0264 (10)0.0156 (9)0.0195 (9)0.0017 (8)0.0102 (8)0.0010 (7)
Geometric parameters (Å, º) top
Cd1—N1i2.2251 (17)N1—N21.349 (3)
Cd1—N1ii2.2251 (17)N1—Cd1v2.2251 (17)
Cd1—O22.2473 (16)N2—N31.298 (3)
Cd1—O2iii2.2473 (16)N3—N41.347 (3)
Cd1—O12.6117 (17)N4—C81.333 (3)
Cd1—O1iii2.6118 (17)C1—C61.390 (3)
Cd1—C7iii2.779 (2)C1—C21.404 (3)
Cd2—N4iv2.2251 (18)C1—C71.498 (3)
Cd2—N42.2251 (18)C2—C31.394 (3)
Cd2—O12.2916 (16)C2—C81.477 (3)
Cd2—O1iv2.2916 (16)C3—C41.378 (4)
Cd2—O1W2.3623 (19)C3—H30.9300
Cd2—O1Wiv2.3623 (19)C4—C51.376 (4)
O1—C71.247 (3)C4—H40.9300
O1W—H1W0.75 (4)C5—C61.375 (3)
O1W—H2W0.87 (4)C5—H50.9300
O2—C71.256 (3)C6—H60.9300
N1—C81.337 (3)
N1i—Cd1—N1ii95.61 (9)Cd2—O1—Cd1127.14 (7)
N1i—Cd1—O2128.32 (7)Cd2—O1W—H1W107 (3)
N1ii—Cd1—O2105.23 (6)Cd2—O1W—H2W112 (2)
N1i—Cd1—O2iii105.23 (6)H1W—O1W—H2W108 (4)
N1ii—Cd1—O2iii128.32 (7)C7—O2—Cd1101.17 (13)
O2—Cd1—O2iii97.83 (9)C8—N1—N2106.63 (16)
N1i—Cd1—O188.50 (6)C8—N1—Cd1v131.21 (14)
N1ii—Cd1—O1151.13 (6)N2—N1—Cd1v121.56 (13)
O2—Cd1—O152.34 (5)N3—N2—N1108.79 (17)
O2iii—Cd1—O177.28 (6)N2—N3—N4109.07 (17)
N1i—Cd1—O1iii151.13 (6)C8—N4—N3106.63 (17)
N1ii—Cd1—O1iii88.50 (6)C8—N4—Cd2133.51 (14)
O2—Cd1—O1iii77.28 (6)N3—N4—Cd2119.53 (13)
O2iii—Cd1—O1iii52.34 (5)C6—C1—C2118.9 (2)
O1—Cd1—O1iii101.55 (8)C6—C1—C7116.11 (19)
N1i—Cd1—C7iii130.83 (7)C2—C1—C7125.01 (19)
N1ii—Cd1—C7iii111.72 (7)C3—C2—C1118.60 (19)
O2—Cd1—C7iii83.94 (7)C3—C2—C8115.22 (19)
O2iii—Cd1—C7iii26.32 (6)C1—C2—C8126.00 (18)
O1—Cd1—C7iii86.03 (6)C4—C3—C2121.5 (2)
O1iii—Cd1—C7iii26.51 (6)C4—C3—H3119.2
N4iv—Cd2—N4180.00 (10)C2—C3—H3119.3
N4iv—Cd2—O199.09 (6)C5—C4—C3119.6 (2)
N4—Cd2—O180.91 (6)C5—C4—H4120.2
N4iv—Cd2—O1iv80.91 (6)C3—C4—H4120.2
N4—Cd2—O1iv99.09 (6)C6—C5—C4119.9 (2)
O1—Cd2—O1iv180.0C6—C5—H5120.1
N4iv—Cd2—O1W91.33 (7)C4—C5—H5120.0
N4—Cd2—O1W88.67 (7)C5—C6—C1121.5 (2)
O1—Cd2—O1W93.94 (7)C5—C6—H6119.3
O1iv—Cd2—O1W86.06 (7)C1—C6—H6119.2
N4iv—Cd2—O1Wiv88.67 (7)O1—C7—O2120.06 (19)
N4—Cd2—O1Wiv91.33 (7)O1—C7—C1122.33 (19)
O1—Cd2—O1Wiv86.06 (7)O2—C7—C1117.60 (19)
O1iv—Cd2—O1Wiv93.94 (7)N4—C8—N1108.88 (18)
O1W—Cd2—O1Wiv180.00 (9)N4—C8—C2129.86 (18)
C7—O1—Cd2144.77 (14)N1—C8—C2120.98 (17)
C7—O1—Cd184.22 (13)
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1/2; (iii) x, y, z+1/2; (iv) x, y+1, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2vi0.75 (4)2.06 (4)2.758 (2)156 (4)
O1W—H2W···N2vii0.87 (4)2.14 (4)2.961 (3)155 (3)
Symmetry codes: (vi) x, y+1, z1/2; (vii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd2(C8H4N4O2)2(H2O)2]
Mr637.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.886 (4), 7.3522 (15), 15.409 (3)
β (°) 115.97 (3)
V3)2025.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.473, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
8913, 1976, 1922
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.13
No. of reflections1976
No. of parameters156
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.75 (4)2.06 (4)2.758 (2)156 (4)
O1W—H2W···N2ii0.87 (4)2.14 (4)2.961 (3)155 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationDunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem. 56, 2395–2400.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.  CrossRef CAS Web of Science Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar
First citationXue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem. 41, 6544–6546.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds