metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1037-m1038

catena-Poly[[(2,9-dieth­­oxy-1,10-phen­anthroline-κ2N,N′)cadmium(II)]-di-μ-dicyan­amido-κ4N1:N5]

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 5 June 2008; accepted 12 July 2008; online 19 July 2008)

In the title polymer, [Cd(C2N3)2(C16H16N2O2)]n, the CdII ion is coordinated by two N atoms from one 2,9-dieth­oxy-1,10-phenanthroline mol­ecule and four N atoms from four symmetry-related dicyanamide ions in a distorted octa­hedral geometry. In the 2,9-dieth­oxy-1,10-phenanthroline ligand, the O and C atoms of the eth­oxy groups are located almost in the plane defined by the phenanthroline ring system. Two dicyanamide ions bridge two CdII ions, which are located on a twofold axis, forming a one-dimensional zigzag chain along the [001] direction. The 2,9-dieth­oxy-1,10-phenanthroline mol­ecules act as bidentate terminal ligands. There are ππ inter­actions between polymeric chains, characterized by a centroid–centroid distance of 3.7624 (2) Å between the phenanthroline rings of two neighbouring chains.

Related literature

For related literature, see: Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]); Chao et al. (2000[Chao, H., Ye, B.-H., Li, H., Li, R.-H., Zhou, J.-Y. & Ji, L.-N. (2000). Polyhedron, 19, 1975-1983.]); Fletcher et al. (2001[Fletcher, A. J., Cussen, E. J., Prior, T. J., Rosseinsky, M. J., Kepert, C. J. & Thomas, K. M. (2001). J. Am. Chem. Soc. 123, 10001-10011.]); Lan et al. (2005[Lan, G.-Z., Wu, A.-Q., Guo, G.-C. & Zheng, F.-K. (2005). Acta Cryst. E61, m1018-m1020.]); Luo et al. (2002[Luo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y.-J., Wang, R.-H. & Weng, J.-B. (2002). Polyhedron, 21, 893-898.]); Jensen et al. (2002[Jensen, P., Batten, S. R., Moubaraki, B. & Murray, K. S. (2002). J. Chem. Soc. Dalton Trans. pp. 3712-3722.]); Pijper et al. (1984[Pijper, P. J., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.]); Karmakar et al. (2006[Karmakar, R., Choudhury, C. R., Hughes, D. L., Yap, G. P. A., El Fallah, M. S., Desplanches, C., Sutter, J.-P. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 1184-1192.]); Triki et al. (2001[Triki, S., Thétiot, F., Galán-Mascarós, J.-R., Sala Pala, J. & Dunbar, K. R. (2001). New J. Chem. pp. 954-958.]); Wang et al. (2004[Wang, X.-L., Qin, C., Wang, E.-B., Xu, L., Su, Z.-M. & Hu, C.-W. (2004). Angew. Chem. Int. Ed. 43, 5036-5040.]); Bing et al. (2004[Bing, Y. J., Leung, L. M. & Menglian, G. (2004). Tetrahedron Lett. 45, 6361-6363.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2N3)2(C16H16N2O2)]

  • Mr = 512.81

  • Monoclinic, C 2/c

  • a = 14.3605 (9) Å

  • b = 12.4386 (8) Å

  • c = 11.7582 (7) Å

  • β = 106.676 (1)°

  • V = 2012.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 (2) K

  • 0.48 × 0.22 × 0.12 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.877

  • 6910 measured reflections

  • 2607 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.051

  • S = 1.04

  • 2607 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N4 2.2980 (15)
Cd1—N2 2.3580 (16)
Cd1—N1 2.3829 (12)
N4—Cd1—N4i 84.73 (9)
N4—Cd1—N2i 86.54 (6)
N4i—Cd1—N2i 91.14 (6)
N2i—Cd1—N2 176.87 (7)
N4—Cd1—N1i 168.02 (6)
N2—Cd1—N1i 98.21 (5)
N4—Cd1—N1 103.21 (5)
N2—Cd1—N1 84.37 (5)
N1i—Cd1—N1 70.51 (6)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of novel coordination polymers with the metal-organic frameworks (MOFs) is a very important part of crystal engineering not only for specially functional material purpose but also for their fascinating structures (Fletcher et al., 2001; Brammer, 2004). As the crucial component and also the network spacers of the coordination polymers, organic or inorganic bridging ligands play important roles in the formation of MOFs. Besides, terminal multi-dentate ligands sometimes can tune the network topology constructed by transition metal ions and bridging ligands. So, combining bridging and terminal ligands to synthesize MOFs compounds have made rapid progress recently.

The derivatives of 1,10-phenanthroline are typical terminal bi-dentate organic ligands and also good candidates for building fluorescent compounds, due to the large aromatic ring system (Bing et al., 2004; Chao et al., 2000). Usually, bi-dentate terminal 1,10-phenanthroline ligands occupy certain portions of the metal coordination sphere to prevent the dimensionality of coordination polymers to increase from one-dimensional to two-dimensional or three-dimensional, while the one-dimensional polymer is constructed by other bridging ligands, such as dicyanamide ions (Wang et al., 2004).

Dicyanamide ion is a novel inorganic bridging ligand that has various coordinating modes in the formation of coordination polymers. As an end-to-end single bridge, it can link two metal ions resulting in a one-dimensional chain (Karmakar et al., 2006) or two-dimensional grids (Jensen et al., 2002). One dicyanamide ion can also bridge more than two metal ions through other bridging modes such as µ3– or µ4– modes, to afford two-dimensional or three-dimensional multi-dimensional frameworks (Jensen et al., 2002). An end-to-end double bridging mode has also been found in a few cases (Triki et al., 2001). As part of our continuing research of MOFs compounds, we communicate here the crystal structure of the title compound.

In the title compound, the central cadmium ion is in a distorted octahedral coordination environment in which two N atoms from a phenanthroline ring and two N atoms from two symmetry-related dicyanamide ions are located in the equatorial plane, while two N atoms from two distinct dicyanamide ions are in axial positions (Fig. 1). Differences in Cd—N bond lengths, which range from 2.2980 (15) to 2.3829 (12) Å, indicate the distortion from ideal octahedron symmetry around Cd centres. The bond angles around the Cd centre within the range 84.37 (5)–103.21 (5)° for the formally cis pair of atoms and 168.02 (6)–176.87 (7)° for the formally trans pairs, give further evidences for the distortion (Table 1). The structure of this compound consists of one-dimensional neutral inorganic double chains where two dicyanamide ions act as bridging ligands by their terminal N atoms, bridging two CdII ions on a twofold axis along the c cell axis. Two CdII ions along the chain are separated by 7.5776 (4) Å. The 2,9-diethoxy-1,10-phenanthroline molecule acts as a bi-dentate terminal ligand.

Two neighbouring infinite one-dimensional chains penetrate into each other through ππ stacking interactions, involving phenanthroline rings, with a centroid to centroid distance of 3.7624 (2) Å and a dihedral angle of 0°. These interactions contribute to the construction of pseudo 2-D layers in the crystal (Fig. 2).

It is noteworthy that only two CdII coordination compounds constructed using mixed ligands 1,10-phenanthroline and dicyanamide are found in the CSD database. One is a monomer (Lan et al., 2005), composed of two 1,10-phenanthroline molecules and two dicyanamide ions, [Cd(C2N3)2(C12H8N2)2], where two dicyanamide ions are in a monodentate coordinating mode and the Cd—N(dicyanamide) bond lengths are 2.251 (2) and 2.257 (2) Å. The other, [Cd(C2N3)2(C12H8N2)]n, however, is a two-dimensional coordination polymer constructed by one Cd ion, one 1,10-phenanthroline molecule, and two dicyanamide ions in one neutral structural unit (Luo et al., 2002). This compound has a molecular formula similar to that of the title compound, but its two-dimensional layer framework is very different from the one-dimensional chain structure observed in the present structure. The bridging modes of dicyanamide ions tuned by different terminal ligand, 1,10-phenanthroline in the literature (Luo et al., 2002) and 2,9-diethoxy-1,10-phenanthroline in the present work, play a critical role in the structural diversity. The diethoxy groups of 2,9-diethoxy-1,10-phenanthroline can occupy some positions that prevent the linkage of dinuclear subunits Cd-(C2N3)2-Cd by other end-to-end single bridges of dicyanamide ions and the formation of the two-dimensional layered structure. For one terminal ligand molecule, two O and four C atoms of two ethoxy groups are located almost in the plane defined by the phenanthroline ring system. One O and two C atoms of one ethoxy group deviate from the phenanthroline plane by about 0.11, 0.07, and 0.26 Å, respectively.

Related literature top

For related literature, see: Brammer (2004); Chao et al. (2000); Fletcher et al. (2001); Lan et al. (2005); Luo et al. (2002); Jensen et al. (2002); Pijper et al. (1984); Karmakar et al. (2006); Triki et al. (2001); Wang et al. (2004); Bing et al. (2004).

Experimental top

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to a reported procedure (Pijper et al., 1984). A solution of NaC2N3 (0.016 g, 0.2 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of Cd(ClO4)2.6H2O (0.042 g, 0.1 mmol) and 2,9-diethoxy-1,10-phenanthroline (0.024 g, 0.1 mmol) in a straight glass tube. About two weeks later, colourless single crystals suitable for X-ray analysis were obtained. Spectroscopic analysis: IR (KBr, ν cm-1): 2990, 2293, 2184, 1603, 1507, 1299, 1041; Analysis: calculated for C20H16CdN8O2: C 46.84, H 3.14, N 21.85%; found: C 46.98, H 3.06, N 21.77%.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å for C2, C3, C6; C—H = 0.99 Å for C7; C—H= 0.98 Å for C8), and were included in the refinement in the riding-model approximation, with Uiso(H) values set at 1.5 times Ueq(C) for methyl H atoms and 1.2 times Ueq(C) for other H atoms. The final difference map had a highest peak at 0.89 Å from atom N3 and a deepest hole at 0.71 Å from atom Cd1, but was otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the CdII coordination environment in the polymeric structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes: (i) -x, y, -z + 3/2; (ii) -x, -y + 1, -z + 2.
[Figure 2] Fig. 2. Packing diagram showing the interchain ππ interactions. All H atoms have been omitted for clarity.
catena-Poly[[(2,9-diethoxy-1,10-phenanthroline- κ2N,N')cadmium(II)]-di-µ-dicyanamido- κ4N1:N5] top
Crystal data top
[Cd(C2N3)2(C16H16N2O2)]Z = 4
Mr = 512.81F(000) = 1024
Monoclinic, C2/cDx = 1.693 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.3605 (9) Åθ = 2.2–29.0°
b = 12.4386 (8) ŵ = 1.12 mm1
c = 11.7582 (7) ÅT = 173 K
β = 106.676 (1)°Block, colourless
V = 2012.0 (2) Å30.48 × 0.22 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2607 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1918
Tmin = 0.615, Tmax = 0.877k = 1416
6910 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.6141P]
where P = (Fo2 + 2Fc2)/3
2607 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cd(C2N3)2(C16H16N2O2)]V = 2012.0 (2) Å3
Mr = 512.81Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.3605 (9) ŵ = 1.12 mm1
b = 12.4386 (8) ÅT = 173 K
c = 11.7582 (7) Å0.48 × 0.22 × 0.12 mm
β = 106.676 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2607 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
2481 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.877Rint = 0.013
6910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2607 reflectionsΔρmin = 0.33 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.307814 (10)0.75000.03578 (6)
N10.05844 (9)0.15137 (10)0.86539 (10)0.0365 (2)
N20.11504 (13)0.31300 (11)0.85824 (15)0.0536 (4)
N30.13259 (16)0.38101 (13)1.04474 (15)0.0721 (5)
N40.08778 (13)0.44432 (13)0.86321 (13)0.0594 (4)
O10.13134 (9)0.24924 (10)1.02404 (9)0.0502 (3)
C10.11272 (11)0.15105 (13)0.97734 (13)0.0404 (3)
C20.14741 (12)0.05560 (14)1.04063 (15)0.0515 (4)
H20.18770.05821.12030.062*
C30.12161 (13)0.03999 (14)0.98457 (17)0.0538 (4)
H30.14450.10511.02520.065*
C40.06132 (12)0.04351 (13)0.86703 (16)0.0463 (3)
C50.03113 (10)0.05547 (11)0.81033 (13)0.0369 (3)
C60.02939 (14)0.14182 (13)0.80563 (18)0.0570 (4)
H60.05020.20830.84440.068*
C70.19439 (13)0.26036 (16)1.14355 (14)0.0510 (4)
H7A0.26050.23451.14810.061*
H7B0.16910.21751.19920.061*
C80.19725 (16)0.37679 (18)1.17551 (16)0.0649 (5)
H8A0.22620.41791.12310.097*
H8B0.23650.38631.25810.097*
H8C0.13100.40251.16630.097*
C90.12079 (12)0.35044 (12)0.94474 (14)0.0431 (3)
C100.10564 (12)0.52463 (13)0.91050 (14)0.0458 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04617 (9)0.02954 (8)0.02878 (8)0.0000.00622 (6)0.000
N10.0399 (6)0.0341 (6)0.0338 (6)0.0023 (5)0.0077 (5)0.0046 (5)
N20.0593 (9)0.0558 (9)0.0474 (8)0.0004 (6)0.0180 (7)0.0080 (6)
N30.1294 (16)0.0418 (8)0.0601 (10)0.0173 (9)0.0510 (11)0.0091 (7)
N40.0826 (11)0.0477 (8)0.0417 (7)0.0154 (7)0.0078 (7)0.0055 (6)
O10.0608 (7)0.0476 (7)0.0316 (5)0.0014 (5)0.0036 (5)0.0019 (4)
C10.0405 (7)0.0436 (8)0.0349 (7)0.0025 (6)0.0076 (6)0.0077 (6)
C20.0524 (9)0.0539 (10)0.0445 (8)0.0078 (7)0.0081 (7)0.0176 (7)
C30.0557 (9)0.0449 (9)0.0606 (10)0.0115 (7)0.0163 (8)0.0223 (8)
C40.0481 (8)0.0364 (7)0.0583 (9)0.0058 (6)0.0211 (7)0.0097 (7)
C50.0387 (7)0.0319 (7)0.0423 (7)0.0009 (5)0.0149 (6)0.0034 (5)
C60.0689 (11)0.0301 (8)0.0776 (12)0.0042 (7)0.0300 (9)0.0068 (7)
C70.0488 (8)0.0679 (11)0.0296 (7)0.0070 (8)0.0004 (6)0.0052 (7)
C80.0750 (12)0.0754 (13)0.0376 (8)0.0053 (10)0.0056 (8)0.0110 (8)
C90.0521 (8)0.0338 (7)0.0437 (8)0.0000 (6)0.0142 (7)0.0006 (6)
C100.0589 (9)0.0430 (8)0.0351 (7)0.0022 (7)0.0128 (6)0.0022 (6)
Geometric parameters (Å, º) top
Cd1—N42.2980 (15)C2—H20.9500
Cd1—N4i2.2980 (15)C3—C41.405 (3)
Cd1—N2i2.3580 (16)C3—H30.9500
Cd1—N22.3580 (16)C4—C51.408 (2)
Cd1—N1i2.3829 (12)C4—C61.427 (3)
Cd1—N12.3829 (12)C5—C5i1.444 (3)
N1—C11.3234 (18)C6—C6i1.338 (4)
N1—C51.3602 (19)C6—H60.9500
N2—C91.143 (2)C7—C81.494 (3)
N3—C91.292 (2)C7—H7A0.9900
N3—C10ii1.299 (2)C7—H7B0.9900
N4—C101.136 (2)C8—H8A0.9800
O1—C11.334 (2)C8—H8B0.9800
O1—C71.4434 (17)C8—H8C0.9800
C1—C21.414 (2)C10—N3ii1.299 (2)
C2—C31.358 (3)
N4—Cd1—N4i84.73 (9)C1—C2—H2120.9
N4—Cd1—N2i86.54 (6)C2—C3—C4120.65 (15)
N4i—Cd1—N2i91.14 (6)C2—C3—H3119.7
N4—Cd1—N291.14 (6)C4—C3—H3119.7
N4i—Cd1—N286.54 (6)C3—C4—C5117.23 (15)
N2i—Cd1—N2176.87 (7)C3—C4—C6122.82 (15)
N4—Cd1—N1i168.02 (6)C5—C4—C6119.94 (16)
N4i—Cd1—N1i103.21 (5)N1—C5—C4122.27 (14)
N2i—Cd1—N1i84.37 (5)N1—C5—C5i118.71 (8)
N2—Cd1—N1i98.21 (5)C4—C5—C5i119.01 (10)
N4—Cd1—N1103.21 (5)C6i—C6—C4121.04 (10)
N4i—Cd1—N1168.02 (6)C6i—C6—H6119.5
N2i—Cd1—N198.21 (5)C4—C6—H6119.5
N2—Cd1—N184.37 (5)O1—C7—C8107.58 (15)
N1i—Cd1—N170.51 (6)O1—C7—H7A110.2
C1—N1—C5118.54 (13)C8—C7—H7A110.2
C1—N1—Cd1125.41 (10)O1—C7—H7B110.2
C5—N1—Cd1116.03 (9)C8—C7—H7B110.2
C9—N2—Cd1137.07 (14)H7A—C7—H7B108.5
C9—N3—C10ii122.21 (15)C7—C8—H8A109.5
C10—N4—Cd1160.44 (17)C7—C8—H8B109.5
C1—O1—C7118.95 (13)H8A—C8—H8B109.5
N1—C1—O1113.44 (13)C7—C8—H8C109.5
N1—C1—C2122.96 (15)H8A—C8—H8C109.5
O1—C1—C2123.59 (14)H8B—C8—H8C109.5
C3—C2—C1118.28 (15)N2—C9—N3172.45 (18)
C3—C2—H2120.9N4—C10—N3ii172.66 (19)
N4—Cd1—N1—C112.39 (13)C5—N1—C1—C23.1 (2)
N4i—Cd1—N1—C1118.3 (2)Cd1—N1—C1—C2178.36 (11)
N2i—Cd1—N1—C1100.74 (12)C7—O1—C1—N1176.54 (14)
N2—Cd1—N1—C177.47 (12)C7—O1—C1—C23.4 (2)
N1i—Cd1—N1—C1178.25 (15)N1—C1—C2—C31.7 (2)
N4—Cd1—N1—C5169.00 (10)O1—C1—C2—C3178.35 (15)
N4i—Cd1—N1—C560.3 (3)C1—C2—C3—C40.5 (3)
N2i—Cd1—N1—C580.65 (10)C2—C3—C4—C51.3 (2)
N2—Cd1—N1—C5101.15 (10)C2—C3—C4—C6177.76 (17)
N1i—Cd1—N1—C50.36 (7)C1—N1—C5—C42.2 (2)
N4—Cd1—N2—C913.0 (2)Cd1—N1—C5—C4179.08 (11)
N4i—Cd1—N2—C997.7 (2)C1—N1—C5—C5i177.68 (15)
N1i—Cd1—N2—C9159.45 (19)Cd1—N1—C5—C5i1.0 (2)
N1—Cd1—N2—C990.1 (2)C3—C4—C5—N10.1 (2)
N4i—Cd1—N4—C1035.8 (4)C6—C4—C5—N1179.14 (14)
N2i—Cd1—N4—C10127.3 (4)C3—C4—C5—C5i179.80 (16)
N2—Cd1—N4—C1050.6 (4)C6—C4—C5—C5i0.7 (2)
N1i—Cd1—N4—C10167.9 (3)C3—C4—C6—C6i178.8 (2)
N1—Cd1—N4—C10135.1 (4)C5—C4—C6—C6i0.2 (3)
C5—N1—C1—O1177.02 (12)C1—O1—C7—C8176.37 (14)
Cd1—N1—C1—O11.57 (17)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C2N3)2(C16H16N2O2)]
Mr512.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.3605 (9), 12.4386 (8), 11.7582 (7)
β (°) 106.676 (1)
V3)2012.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.48 × 0.22 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.615, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
6910, 2607, 2481
Rint0.013
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.04
No. of reflections2607
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N42.2980 (15)Cd1—N12.3829 (12)
Cd1—N22.3580 (16)
N4—Cd1—N4i84.73 (9)N2—Cd1—N1i98.21 (5)
N4—Cd1—N2i86.54 (6)N4—Cd1—N1103.21 (5)
N4i—Cd1—N2i91.14 (6)N2—Cd1—N184.37 (5)
N2i—Cd1—N2176.87 (7)N1i—Cd1—N170.51 (6)
N4—Cd1—N1i168.02 (6)
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.

References

First citationBing, Y. J., Leung, L. M. & Menglian, G. (2004). Tetrahedron Lett. 45, 6361–6363.  Web of Science CrossRef CAS Google Scholar
First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChao, H., Ye, B.-H., Li, H., Li, R.-H., Zhou, J.-Y. & Ji, L.-N. (2000). Polyhedron, 19, 1975–1983.  Web of Science CrossRef CAS Google Scholar
First citationFletcher, A. J., Cussen, E. J., Prior, T. J., Rosseinsky, M. J., Kepert, C. J. & Thomas, K. M. (2001). J. Am. Chem. Soc. 123, 10001–10011.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJensen, P., Batten, S. R., Moubaraki, B. & Murray, K. S. (2002). J. Chem. Soc. Dalton Trans. pp. 3712–3722.  Web of Science CSD CrossRef Google Scholar
First citationKarmakar, R., Choudhury, C. R., Hughes, D. L., Yap, G. P. A., El Fallah, M. S., Desplanches, C., Sutter, J.-P. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 1184–1192.  Web of Science CSD CrossRef CAS Google Scholar
First citationLan, G.-Z., Wu, A.-Q., Guo, G.-C. & Zheng, F.-K. (2005). Acta Cryst. E61, m1018–m1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y.-J., Wang, R.-H. & Weng, J.-B. (2002). Polyhedron, 21, 893–898.  Web of Science CSD CrossRef CAS Google Scholar
First citationPijper, P. J., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTriki, S., Thétiot, F., Galán-Mascarós, J.-R., Sala Pala, J. & Dunbar, K. R. (2001). New J. Chem. pp. 954–958.  Web of Science CSD CrossRef Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Xu, L., Su, Z.-M. & Hu, C.-W. (2004). Angew. Chem. Int. Ed. 43, 5036–5040.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1037-m1038
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds