organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(+)-Ketamine hydro­chloride

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: wouellet@syr.edu

(Received 11 June 2008; accepted 7 July 2008; online 16 July 2008)

The crystal structure of the title compound {systematic name: (S)-(+)-N-[1-(2-chloro­phen­yl)-2-oxocyclo­hexyl]meth­anam­in­ium chloride}, C13H17ClNO+·Cl, was determined at 90 (2) K. The (S)-(+)-ketamine hydro­chloride salt is a well known anesthetic compound and is dramatically more potent than its R isomer. In the title compound, the cyclo­hexa­none ring adopts a chair conformation with the oxo group in the equatorial orientation. The methyl­amino and 2-chloro­phenyl groups at the 2-position have an equatorial and an axial orientation, respectively. The packing of ions is stabilized by an infinite one-dimensional ⋯Cl⋯H—N—H⋯Cl⋯ hydrogen-bonding network, involving NH2+ groups as donors and chloride anions as acceptors.

Related literature

For related literature, see: Chankvetadze et al. (2002[Chankvetadze, B., Burjanadze, N., Breitkreutz, J., Bergander, K., Bergenthal, D., Kataeva, O., Fröhlich, R., Luftmann, H. & Blaschke, G. (2002). J. Sep. Sci. 25, 1155-1166.]); Domino et al. (1965[Domino, E. F., Chodoff, P. & Corssen, G. (1965). Clin. Pharmacol. Ther. 6, 279-291.]); Marhofer et al. (2001[Marhofer, P., Freitag, H., Hochtl, A., Greher, M., Erlacher, W. & Semsroth, M. (2001). Anesth. Analg. 92, 62-65.]); Mathisen et al. (1995[Mathisen, L. C., Skjelbred, P., Skoglund, L. A. & Oye, I. (1995). Pain, 61, 215-220.]); Pees et al. (2003[Pees, C., Haas, N. A., Ewert, P., Berger, F. & Lange, P. E. (2003). Pediatr. Cardiol. 24, 424-429.]); Reich & Silvay (1989[Reich, D. L. & Silvay, G. (1989). Can. J. Anaesth. 36, 186-197.]); Smirnova et al. (1989[Smirnova, V. I., Zhukhlistova, N. E., Tishchenko, G. N., Grinenko, A. Y., Krupitskii, E. M. & Moshkov, K. A. (1989). Krystallografiya, 34, 642-648.]); White et al. (1985[White, P. F., Schuttler, J., Shafer, A., Stanski, D. R., Horai, Y. & Trevor, A. J. (1985). Br. J. Anaesth. 57, 197-203.]); Wolff & Winstock (2006[Wolff, K. & Winstock, A. R. (2006). CNS Drugs, 20, 199-218.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17ClNO+·Cl

  • Mr = 274.18

  • Monoclinic, P 21

  • a = 8.4338 (4) Å

  • b = 7.0715 (4) Å

  • c = 11.3524 (6) Å

  • β = 101.875 (1)°

  • V = 662.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 90 (2) K

  • 0.50 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.798, Tmax = 0.954

  • 6985 measured reflections

  • 3251 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.07

  • 3251 reflections

  • 223 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1472 Friedel pairs

  • Flack parameter: 0.00 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.83 (3) 2.39 (3) 3.1359 (15) 151 (2)
N1—H1B⋯Cl2 0.869 (19) 2.278 (19) 3.1065 (13) 159.4 (17)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, (S)-(+)-ketamine hydrochloride, has been investigated by single-crystal X-ray diffraction at 90 (2) K (Fig. 1 and 2). The use of ketamine has been shown to lead to a state of dissociative anesthesia (Domino et al., 1965). This study focuses on the S isomer of the well known anesthetic compound ketamine hydrochloride because it is dramatically more potent than its R isomer (White et al., 1985). The pure S isomer is available commercially as Ketanest STM, while the racemic mixture, containing both S and R isomers is available under many names, including: KetalarTM, KetanestTM, and KetajectTM (Marhofer et al., 2001; Wolff & Winstock, 2006). Both the S and R isomers of neutral ketamine have been structurally characterized by X-ray diffraction in an earlier investigation (Chankvetadze et al., 2002). The compound is listed as a Schedule III controlled substance by the Federal government of the United States (Wolff & Winstock, 2006). Ketamine hydrochloride was first investigated in the 1960's and is a derivative of the more dangerous psychotomimetic drug, Phencyclidine (Domino et al., 1965). The chirality of Ketamine can be attributed to the C2 position, located on the cyclohexanone ring (Reich & Silvay, 1989). The potency of the drug is dependent upon its conformation, with the S isomer displaying analgesic effects roughly 4 times greater than those displayed by the levorotatory enantiomer R-(-)-Ketamine in controlling the pain of postoperative patients (Mathisen et al., 1995). In comparison to the racemic mixture, the S-isomer produces analgesic and anesthetic effects with twice the potency of the racemic (White et al., 1985). Increased potency enables the use of a much lower dosage while still producing the required effect, in turn leading to a quicker recovery time from the anesthesia (Pees et al., 2003). The potential advantages of the S isomer over the racemic mixture have lead to an increase in clinical use of the enantiomerically pure compound, particularly in Europe (Marhofer et al., 2001). The potency, the increasing clinical usage, and the strong potential for abuse of (S)-(+)-Ketamine hydrochloride, provide a need for the complete characterization of this molecule, and its previously unpublished crystal structure. An unequivocal understanding of the solid-state crystal structure of the compound is a necessity for detection and identification methods such as THz vibrational spectroscopy, or solid-state NMR, among others. This study has determined that the compound crystallizes in the monoclinic space group P21, with a unit cell volume of 662.56 (6) Å3 at 90 K, and Z value 2. The complete atomic coordinates have also been determined.

Related literature top

For related literature, see: Chankvetadze et al. (2002); Domino et al. (1965); Marhofer et al. (2001); Mathisen et al. (1995); Pees et al. (2003); Reich & Silvay (1989); Smirnova et al. (1989); White et al. (1985); Wolff & Winstock (2006).

Experimental top

All material used for this work was purchased from Sigma-Aldrich (minimum 99% pure) and used without further purification. The absolute configuration of the enantiomer was verified by measuring the optical rotation of the material using a Jasco DIP-1000 digital polarimeter. The absolute configuration determined from anomalous dispersion-effects is consistent with the expected enantiomer.

Refinement top

H atoms were located in a difference map and refined freely. The C—H and N—H bond lengths range from 0.91 (2) to 1.014 (17) and 0.83 (3) to 0.869 (18) Å, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title salt, with the atom numbering scheme and thermal ellipsoids drawn at 50% probability level. H atoms have been omitted for clarity
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis.
(S)-(+)-N-[1-(2-chlorophenyl)-2-oxocyclohexyl]methanaminium chloride top
Crystal data top
C13H17ClNO·ClF(000) = 288
Mr = 274.18Dx = 1.374 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3471 reflections
a = 8.4338 (4) Åθ = 2.5–28.2°
b = 7.0715 (4) ŵ = 0.47 mm1
c = 11.3524 (6) ÅT = 90 K
β = 101.875 (1)°Rod, colourless
V = 662.56 (6) Å30.50 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3251 independent reflections
Radiation source: fine-focus sealed tube3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 99
Tmin = 0.798, Tmax = 0.954l = 1515
6985 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027All H-atom parameters refined
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.0273P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3251 reflectionsΔρmax = 0.31 e Å3
223 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1472 Friedel pairs
0 constraintsAbsolute structure parameter: 0.00 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H17ClNO·ClV = 662.56 (6) Å3
Mr = 274.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.4338 (4) ŵ = 0.47 mm1
b = 7.0715 (4) ÅT = 90 K
c = 11.3524 (6) Å0.50 × 0.12 × 0.10 mm
β = 101.875 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3146 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.954Rint = 0.020
6985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027All H-atom parameters refined
wR(F2) = 0.066Δρmax = 0.31 e Å3
S = 1.07Δρmin = 0.17 e Å3
3251 reflectionsAbsolute structure: Flack (1983), 1472 Friedel pairs
223 parametersAbsolute structure parameter: 0.00 (5)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.05227 (4)0.23769 (5)0.35081 (3)0.01627 (9)
Cl10.34238 (5)0.13679 (5)0.87212 (4)0.02248 (10)
O10.38001 (14)0.03746 (17)0.60012 (10)0.0205 (2)
N10.11098 (16)0.1291 (2)0.62148 (11)0.0132 (3)
C10.27185 (19)0.0822 (2)0.90899 (14)0.0157 (3)
C20.2437 (2)0.0998 (3)1.02456 (15)0.0212 (3)
C30.1889 (2)0.2691 (3)1.06202 (16)0.0239 (4)
C40.1635 (2)0.4199 (3)0.98344 (15)0.0218 (4)
C50.19088 (19)0.4012 (2)0.86757 (15)0.0175 (3)
C60.24628 (16)0.2315 (3)0.82673 (13)0.0140 (3)
C70.26395 (16)0.2136 (2)0.69555 (12)0.0124 (3)
C80.40443 (19)0.0878 (2)0.67428 (13)0.0155 (3)
C90.57016 (19)0.1543 (2)0.73576 (15)0.0176 (3)
C100.59821 (19)0.3492 (3)0.68330 (14)0.0175 (3)
C110.46277 (19)0.4860 (2)0.69619 (15)0.0166 (3)
C120.29711 (19)0.4052 (2)0.63815 (14)0.0142 (3)
C130.04410 (18)0.2160 (3)0.63712 (14)0.0170 (3)
H11B0.471 (2)0.511 (3)0.7848 (19)0.024 (5)*
H12A0.294 (2)0.378 (3)0.5499 (16)0.014 (4)*
H13A0.060 (2)0.181 (3)0.7166 (17)0.015 (5)*
H10B0.603 (2)0.334 (3)0.6003 (17)0.016 (5)*
H9A0.649 (2)0.055 (3)0.7199 (18)0.024 (5)*
H1B0.116 (2)0.140 (3)0.5461 (17)0.008 (4)*
H10A0.703 (3)0.397 (3)0.7211 (17)0.021 (5)*
H13B0.126 (2)0.167 (3)0.5775 (18)0.021 (5)*
H9B0.574 (2)0.167 (3)0.8215 (18)0.018 (5)*
H50.174 (2)0.503 (3)0.8174 (19)0.023 (5)*
H12B0.209 (2)0.490 (3)0.6419 (16)0.018 (5)*
H30.166 (2)0.278 (3)1.1373 (19)0.026 (6)*
H20.259 (2)0.003 (3)1.0735 (17)0.015 (5)*
H40.128 (2)0.542 (3)1.0038 (18)0.022 (5)*
H13C0.038 (2)0.351 (3)0.6318 (16)0.018 (5)*
H1A0.105 (3)0.015 (4)0.6352 (18)0.024 (5)*
H11A0.483 (3)0.601 (4)0.6570 (18)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.02035 (17)0.01438 (16)0.01376 (16)0.00042 (14)0.00279 (12)0.00059 (13)
Cl10.0302 (2)0.01408 (17)0.02266 (19)0.00260 (16)0.00414 (15)0.00452 (14)
O10.0253 (6)0.0180 (6)0.0188 (6)0.0042 (5)0.0059 (5)0.0035 (5)
N10.0159 (6)0.0117 (6)0.0117 (6)0.0003 (5)0.0019 (5)0.0008 (5)
C10.0155 (7)0.0150 (7)0.0163 (7)0.0006 (6)0.0020 (6)0.0008 (6)
C20.0197 (8)0.0285 (9)0.0145 (7)0.0054 (7)0.0016 (6)0.0048 (7)
C30.0211 (8)0.0358 (11)0.0159 (8)0.0058 (7)0.0064 (6)0.0049 (7)
C40.0192 (8)0.0261 (9)0.0203 (8)0.0013 (6)0.0048 (6)0.0092 (7)
C50.0170 (7)0.0169 (8)0.0180 (7)0.0013 (6)0.0022 (6)0.0013 (6)
C60.0129 (6)0.0164 (7)0.0126 (6)0.0008 (6)0.0026 (5)0.0003 (6)
C70.0130 (6)0.0126 (7)0.0113 (6)0.0003 (6)0.0015 (5)0.0006 (6)
C80.0192 (8)0.0145 (7)0.0135 (7)0.0044 (6)0.0053 (6)0.0035 (6)
C90.0148 (7)0.0197 (8)0.0183 (8)0.0046 (6)0.0038 (6)0.0024 (6)
C100.0159 (7)0.0200 (8)0.0171 (7)0.0001 (6)0.0044 (6)0.0002 (6)
C110.0171 (7)0.0143 (7)0.0186 (8)0.0001 (6)0.0042 (6)0.0012 (6)
C120.0153 (7)0.0127 (7)0.0146 (7)0.0003 (5)0.0028 (5)0.0013 (5)
C130.0149 (7)0.0163 (8)0.0197 (7)0.0001 (6)0.0033 (5)0.0022 (7)
Geometric parameters (Å, º) top
Cl1—C11.7403 (16)C7—C81.540 (2)
O1—C81.210 (2)C7—C121.553 (2)
N1—C131.488 (2)C8—C91.503 (2)
N1—C71.5108 (19)C9—C101.539 (2)
N1—H1B0.869 (18)C9—H9A1.01 (2)
N1—H1A0.83 (3)C9—H9B0.97 (2)
C1—C21.386 (2)C10—C111.527 (2)
C1—C61.397 (2)C10—H10B0.957 (18)
C2—C31.382 (3)C10—H10A0.96 (2)
C2—H20.91 (2)C11—C121.528 (2)
C3—C41.378 (3)C11—H11B1.01 (2)
C3—H30.92 (2)C11—H11A0.96 (2)
C4—C51.388 (2)C12—H12A1.014 (17)
C4—H40.96 (2)C12—H12B0.96 (2)
C5—C61.401 (2)C13—H13A0.971 (19)
C5—H50.91 (2)C13—H13B0.93 (2)
C6—C71.5321 (19)C13—H13C0.96 (2)
C13—N1—C7116.17 (12)C9—C8—C7114.74 (13)
C13—N1—H1B107.8 (12)C8—C9—C10107.60 (13)
C7—N1—H1B107.7 (12)C8—C9—H9A106.5 (12)
C13—N1—H1A106.8 (15)C10—C9—H9A113.3 (12)
C7—N1—H1A111.3 (15)C8—C9—H9B109.6 (12)
H1B—N1—H1A106.7 (19)C10—C9—H9B109.0 (12)
C2—C1—C6122.11 (15)H9A—C9—H9B110.8 (16)
C2—C1—Cl1116.19 (13)C11—C10—C9110.66 (13)
C6—C1—Cl1121.69 (12)C11—C10—H10B110.3 (11)
C3—C2—C1120.18 (16)C9—C10—H10B108.8 (12)
C3—C2—H2121.6 (12)C11—C10—H10A111.8 (13)
C1—C2—H2118.2 (12)C9—C10—H10A110.1 (13)
C4—C3—C2119.23 (15)H10B—C10—H10A105.0 (16)
C4—C3—H3121.0 (14)C10—C11—C12110.94 (14)
C2—C3—H3119.7 (14)C10—C11—H11B108.0 (12)
C3—C4—C5120.40 (16)C12—C11—H11B111.3 (12)
C3—C4—H4123.7 (13)C10—C11—H11A106.8 (14)
C5—C4—H4115.9 (13)C12—C11—H11A110.4 (13)
C4—C5—C6121.81 (16)H11B—C11—H11A109.3 (17)
C4—C5—H5118.8 (13)C11—C12—C7111.90 (12)
C6—C5—H5119.4 (13)C11—C12—H12A109.5 (10)
C1—C6—C5116.27 (13)C7—C12—H12A106.2 (12)
C1—C6—C7123.69 (15)C11—C12—H12B113.2 (13)
C5—C6—C7119.89 (14)C7—C12—H12B108.5 (12)
N1—C7—C6109.33 (11)H12A—C12—H12B107.2 (15)
N1—C7—C8106.29 (12)N1—C13—H13A107.3 (11)
C6—C7—C8115.60 (12)N1—C13—H13B107.4 (12)
N1—C7—C12108.57 (11)H13A—C13—H13B111.0 (17)
C6—C7—C12113.44 (13)N1—C13—H13C110.3 (11)
C8—C7—C12103.13 (11)H13A—C13—H13C109.3 (16)
O1—C8—C9124.09 (15)H13B—C13—H13C111.5 (17)
O1—C8—C7120.38 (14)
C6—C1—C2—C30.2 (2)C5—C6—C7—C8146.41 (14)
Cl1—C1—C2—C3179.44 (13)C1—C6—C7—C12157.03 (14)
C1—C2—C3—C40.3 (3)C5—C6—C7—C1227.58 (18)
C2—C3—C4—C50.7 (3)N1—C7—C8—O16.73 (18)
C3—C4—C5—C60.7 (3)C6—C7—C8—O1128.23 (15)
C2—C1—C6—C50.2 (2)C12—C7—C8—O1107.40 (16)
Cl1—C1—C6—C5179.37 (11)N1—C7—C8—C9177.01 (12)
C2—C1—C6—C7175.34 (14)C6—C7—C8—C961.50 (17)
Cl1—C1—C6—C75.1 (2)C12—C7—C8—C962.88 (15)
C4—C5—C6—C10.2 (2)O1—C8—C9—C10107.30 (17)
C4—C5—C6—C7175.93 (14)C7—C8—C9—C1062.57 (16)
C13—N1—C7—C648.63 (18)C8—C9—C10—C1155.38 (17)
C13—N1—C7—C8174.05 (13)C9—C10—C11—C1255.57 (17)
C13—N1—C7—C1275.59 (16)C10—C11—C12—C759.27 (17)
C1—C6—C7—N181.64 (16)N1—C7—C12—C11171.44 (12)
C5—C6—C7—N193.75 (17)C6—C7—C12—C1166.81 (16)
C1—C6—C7—C838.2 (2)C8—C7—C12—C1158.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.83 (3)2.39 (3)3.1359 (15)151 (2)
N1—H1B···Cl20.869 (19)2.278 (19)3.1065 (13)159.4 (17)
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H17ClNO·Cl
Mr274.18
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)8.4338 (4), 7.0715 (4), 11.3524 (6)
β (°) 101.875 (1)
V3)662.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.50 × 0.12 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.798, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
6985, 3251, 3146
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.07
No. of reflections3251
No. of parameters223
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.17
Absolute structureFlack (1983), 1472 Friedel pairs
Absolute structure parameter0.00 (5)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.83 (3)2.39 (3)3.1359 (15)151 (2)
N1—H1B···Cl20.869 (19)2.278 (19)3.1065 (13)159.4 (17)
Symmetry code: (i) x, y1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation (CHE-0604527). PMH expresses his gratitude to the Syracuse University and STEM Fellowship programs.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChankvetadze, B., Burjanadze, N., Breitkreutz, J., Bergander, K., Bergenthal, D., Kataeva, O., Fröhlich, R., Luftmann, H. & Blaschke, G. (2002). J. Sep. Sci. 25, 1155–1166.  CrossRef CAS Google Scholar
First citationDomino, E. F., Chodoff, P. & Corssen, G. (1965). Clin. Pharmacol. Ther. 6, 279–291.  PubMed CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarhofer, P., Freitag, H., Hochtl, A., Greher, M., Erlacher, W. & Semsroth, M. (2001). Anesth. Analg. 92, 62–65.  CrossRef PubMed CAS Google Scholar
First citationMathisen, L. C., Skjelbred, P., Skoglund, L. A. & Oye, I. (1995). Pain, 61, 215–220.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPalmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPees, C., Haas, N. A., Ewert, P., Berger, F. & Lange, P. E. (2003). Pediatr. Cardiol. 24, 424–429.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReich, D. L. & Silvay, G. (1989). Can. J. Anaesth. 36, 186–197.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirnova, V. I., Zhukhlistova, N. E., Tishchenko, G. N., Grinenko, A. Y., Krupitskii, E. M. & Moshkov, K. A. (1989). Krystallografiya, 34, 642–648.  CAS Google Scholar
First citationWhite, P. F., Schuttler, J., Shafer, A., Stanski, D. R., Horai, Y. & Trevor, A. J. (1985). Br. J. Anaesth. 57, 197–203.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWolff, K. & Winstock, A. R. (2006). CNS Drugs, 20, 199–218.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds