organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of N,N′-bis­­(2,6-diiso­propyl­phen­yl)formamidine

aDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca

(Received 24 June 2008; accepted 4 July 2008; online 9 July 2008)

A new polymorph of N,N′-bis­(2,6-diisopropyl­phen­yl)formamidine, C25H36N2, is reported, which is different from the previously reported ortho­rhom­bic structure. The mol­ecule crystallizes in the Eanti configuration, with tautomeric disorder of the N-bonded H atoms and no clear distinction between imine and amine functionalities. The mol­ecules form hydrogen-bonded dimers with inter­molecular N⋯N distances shorter than those in the ortho­rhom­bic polymorph.

Related literature

For the ortho­rhom­bic polymorph, see: Stibrany & Potenza (2006[Stibrany, R. T. & Potenza, J. A. (2006). Private communication (refcode: TEVJOU). CCDC, Cambridge, England.]). For synthetic details and related literature, see: Krahulic et al. (2005[Krahulic, K. E., Enright, G. D., Parvez, M. & Roesler, R. (2005). J. Am. Chem. Soc. 127, 4142-4143.]); Perrin (1991[Perrin, C. L. (1991). The Chemistry of Amidines and Imidates, Vol. 2, edited by S. Patai & Z. Rappoport, pp. 147-229. Chichester: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C25H36N2

  • Mr = 364.56

  • Monoclinic, C 2/c

  • a = 24.169 (4) Å

  • b = 12.7881 (18) Å

  • c = 19.479 (3) Å

  • β = 126.735 (2)°

  • V = 4824.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 291 (2) K

  • 0.45 × 0.34 × 0.30 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: none

  • 12048 measured reflections

  • 4242 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.161

  • S = 1.02

  • 4242 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.86 2.03 2.882 (4) 171
N2—H2A⋯N2i 0.86 2.05 2.910 (3) 175
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. J. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Crystals of the title compound were grown from toluene solution and were found to crystallize in the monoclinic space group C2/c, different from the previously published polymorph which crystallizes in the orthorhombic space group C2221 (Stibrany & Potenza, 2006). The molecule crystallizes in the E-anti configuration (Perrin, 1991), with tautomeric disorder of the N-bonded H atoms. The molecules form hydrogen-bonded dimers with N···N distances of 2.882 (4) and 2.910 (3) Å (Table 1). These distances are slightly shorter than that seen in the orthorhombic polymorph (2.947 Å). The two core amidine (NCNH) fragments are non-coplanar as a result of interaction between the sterically bulky 2,6-diisopropylphenyl fragments. The N1—C(1) (1.313 (3) Å) and N2—C1 (1.311 (3) Å) distances are similar in length, whereas in the orthorhombic polymorph there are distinct imine (1.288 Å) and amine (1.325 Å) functionalities.

Related literature top

For the orthorhombic polymorph, see: Stibrany & Potenza (2006). For synthesis details and related literature, see: Krahulic et al. (2005); Perrin (1991).

Experimental top

The title compound was prepared according to the literature procedure (Krahulic et al., 2005). Crystals were grown by evaporation of a toluene solution at room temperature.

Refinement top

H atoms bonded to C and N atoms were refined in geometrically idealized positions with the riding-model approximation. The difference map showed equivalent electron density for the H atoms bonded to the formamidine N atoms. Thus, the H atom was refined as disordered over two positions, each with site occupancy factor 0.5.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at the 30% probability level for non-H atoms. H atoms bound to C (except for H1) are omitted, and only one of the disordered H atoms (H1A & H1B) is shown.
[Figure 2] Fig. 2. A plot of the hydrogen-bonded dimer in the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms. H atoms bound to C (except for H1) are omitted, and only one of the disordered H atoms (H1A & H1B) is shown.
N,N'-bis(2,6-diisopropylphenyl)formamidine top
Crystal data top
C25H36N2F(000) = 1600
Mr = 364.56Dx = 1.004 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2205 reflections
a = 24.169 (4) Åθ = 2.6–21.8°
b = 12.7881 (18) ŵ = 0.06 mm1
c = 19.479 (3) ÅT = 291 K
β = 126.735 (2)°Block, colourless
V = 4824.8 (12) Å30.45 × 0.34 × 0.30 mm
Z = 8
Data collection top
Bruker SMART 1K CCD
diffractometer
2237 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 2828
12048 measured reflectionsk = 715
4242 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.065P)2 + 2.1873P]
where P = (Fo2 + 2Fc2)/3
4242 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H36N2V = 4824.8 (12) Å3
Mr = 364.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.169 (4) ŵ = 0.06 mm1
b = 12.7881 (18) ÅT = 291 K
c = 19.479 (3) Å0.45 × 0.34 × 0.30 mm
β = 126.735 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2237 reflections with I > 2σ(I)
12048 measured reflectionsRint = 0.036
4242 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4242 reflectionsΔρmin = 0.17 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.02590 (9)0.18752 (13)0.69910 (11)0.0465 (5)
H2A0.01130.19190.72990.056*0.50
N10.00186 (10)0.01071 (13)0.67743 (12)0.0502 (5)
H1A0.00420.00870.71670.060*0.50
C20.00791 (13)0.08218 (17)0.63024 (16)0.0509 (6)
C10.01996 (11)0.09893 (17)0.66139 (14)0.0468 (6)
H10.02900.09850.62120.056*
C140.05632 (11)0.27673 (17)0.68974 (14)0.0463 (6)
C150.01510 (13)0.36571 (18)0.64789 (15)0.0554 (6)
C190.12706 (12)0.27631 (19)0.72640 (16)0.0569 (6)
C70.03995 (14)0.16434 (18)0.67252 (17)0.0607 (7)
C30.06573 (14)0.0910 (2)0.54441 (16)0.0612 (7)
C110.10007 (15)0.1590 (2)0.76716 (17)0.0705 (8)
H11A0.09040.10150.79170.085*
C80.12183 (15)0.0076 (2)0.50015 (18)0.0746 (8)
H8A0.10930.04740.54220.090*
C60.03099 (18)0.2520 (2)0.6239 (2)0.0797 (9)
H6A0.06270.30640.64990.096*
C40.07140 (17)0.1813 (2)0.50041 (19)0.0781 (9)
H4A0.10900.18840.44320.094*
C200.06095 (13)0.3655 (2)0.60888 (18)0.0692 (8)
H20A0.06730.31220.63970.083*
C160.04601 (16)0.4528 (2)0.64050 (19)0.0776 (8)
H16A0.01960.51200.61200.093*
C170.11450 (18)0.4525 (2)0.6744 (2)0.0902 (10)
H17A0.13410.51130.66880.108*
C230.17226 (13)0.1832 (2)0.77905 (18)0.0719 (8)
H23A0.14490.12000.75020.086*
C180.15455 (15)0.3660 (2)0.7168 (2)0.0803 (9)
H18A0.20110.36730.73960.096*
C50.0236 (2)0.2596 (2)0.5387 (2)0.0874 (10)
H5A0.02790.31790.50720.105*
C250.23851 (14)0.1727 (3)0.7863 (2)0.0935 (10)
H25A0.22760.17490.73020.140*
H25B0.26050.10740.81330.140*
H25C0.26910.22930.82010.140*
C130.10778 (19)0.2581 (3)0.8163 (2)0.1084 (12)
H13A0.14330.24780.87640.163*
H13B0.12000.31580.79630.163*
H13C0.06490.27300.80710.163*
C120.16764 (18)0.1332 (3)0.7815 (2)0.1097 (12)
H12A0.16300.06820.75390.165*
H12B0.17880.18790.75790.165*
H12C0.20380.12730.84180.165*
C100.12660 (19)0.0421 (3)0.4259 (2)0.1045 (11)
H10A0.08230.06970.44610.157*
H10B0.15990.09760.40210.157*
H10C0.14060.00970.38270.157*
C240.18908 (18)0.1848 (3)0.8679 (2)0.1184 (14)
H24A0.14700.18160.86270.178*
H24B0.21330.24820.89680.178*
H24C0.21750.12580.90020.178*
C210.08718 (19)0.4678 (3)0.6196 (3)0.1195 (13)
H21A0.05740.48920.67850.179*
H21B0.13320.45810.60260.179*
H21C0.08750.52070.58440.179*
C90.19216 (18)0.0515 (3)0.4695 (3)0.1260 (14)
H9A0.19000.07400.51810.189*
H9B0.20380.10990.43210.189*
H9C0.22670.00180.43920.189*
C220.10306 (17)0.3317 (4)0.5178 (2)0.1415 (17)
H22A0.08550.26660.51350.212*
H22B0.10070.38390.48420.212*
H22C0.15020.32260.49690.212*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0542 (12)0.0376 (11)0.0561 (12)0.0011 (9)0.0376 (10)0.0006 (9)
N10.0740 (14)0.0368 (11)0.0566 (12)0.0004 (10)0.0481 (11)0.0005 (9)
C20.0741 (17)0.0376 (13)0.0615 (16)0.0029 (12)0.0516 (15)0.0020 (12)
C10.0513 (14)0.0483 (14)0.0475 (13)0.0015 (11)0.0330 (12)0.0025 (12)
C140.0511 (14)0.0420 (13)0.0495 (13)0.0059 (11)0.0322 (12)0.0040 (11)
C150.0612 (16)0.0429 (14)0.0589 (16)0.0023 (12)0.0342 (14)0.0009 (12)
C190.0550 (16)0.0551 (15)0.0616 (16)0.0068 (13)0.0355 (13)0.0058 (13)
C70.089 (2)0.0415 (14)0.0725 (18)0.0033 (14)0.0599 (17)0.0001 (13)
C30.0817 (19)0.0557 (16)0.0582 (17)0.0070 (14)0.0483 (16)0.0065 (14)
C110.090 (2)0.0576 (17)0.074 (2)0.0200 (15)0.0539 (18)0.0119 (15)
C80.078 (2)0.080 (2)0.0591 (17)0.0008 (17)0.0373 (16)0.0067 (15)
C60.120 (3)0.0427 (16)0.100 (3)0.0088 (16)0.079 (2)0.0006 (16)
C40.106 (2)0.069 (2)0.0666 (19)0.0134 (18)0.0555 (18)0.0150 (17)
C200.0616 (17)0.0590 (17)0.079 (2)0.0106 (14)0.0379 (16)0.0132 (15)
C160.086 (2)0.0506 (16)0.095 (2)0.0034 (15)0.0534 (19)0.0093 (16)
C170.093 (2)0.0605 (19)0.125 (3)0.0231 (18)0.069 (2)0.003 (2)
C230.0534 (16)0.0719 (18)0.083 (2)0.0030 (14)0.0369 (15)0.0051 (16)
C180.0636 (18)0.076 (2)0.101 (2)0.0171 (16)0.0493 (18)0.0044 (18)
C50.139 (3)0.0538 (19)0.096 (3)0.009 (2)0.084 (2)0.0201 (18)
C250.0622 (18)0.117 (3)0.094 (2)0.0095 (18)0.0426 (17)0.009 (2)
C130.146 (3)0.089 (2)0.107 (3)0.024 (2)0.085 (3)0.034 (2)
C120.099 (3)0.127 (3)0.105 (3)0.010 (2)0.062 (2)0.019 (2)
C100.127 (3)0.099 (3)0.088 (2)0.021 (2)0.064 (2)0.022 (2)
C240.097 (2)0.168 (4)0.099 (3)0.056 (3)0.063 (2)0.052 (3)
C210.109 (3)0.097 (3)0.158 (4)0.034 (2)0.084 (3)0.006 (3)
C90.096 (3)0.149 (4)0.137 (3)0.001 (3)0.071 (3)0.009 (3)
C220.067 (2)0.214 (5)0.096 (3)0.005 (3)0.023 (2)0.040 (3)
Geometric parameters (Å, º) top
N2—C11.310 (3)C16—H16A0.930
N2—C141.427 (3)C17—C181.373 (4)
N2—H2A0.860C17—H17A0.930
N1—C11.313 (3)C23—C241.523 (4)
N1—C21.432 (3)C23—C251.527 (4)
N1—H1A0.860C23—H23A0.980
C2—C31.402 (3)C18—H18A0.930
C2—C71.407 (3)C5—H5A0.930
C1—H10.930C25—H25A0.960
C14—C191.404 (3)C25—H25B0.960
C14—C151.407 (3)C25—H25C0.960
C15—C161.395 (3)C13—H13A0.960
C15—C201.512 (3)C13—H13B0.960
C19—C181.392 (3)C13—H13C0.960
C19—C231.524 (3)C12—H12A0.960
C7—C61.398 (3)C12—H12B0.960
C7—C111.520 (4)C12—H12C0.960
C3—C41.395 (4)C10—H10A0.960
C3—C81.523 (4)C10—H10B0.960
C11—C121.519 (4)C10—H10C0.960
C11—C131.531 (4)C24—H24A0.960
C11—H11A0.980C24—H24B0.960
C8—C101.520 (4)C24—H24C0.960
C8—C91.532 (4)C21—H21A0.960
C8—H8A0.980C21—H21B0.960
C6—C51.373 (4)C21—H21C0.960
C6—H6A0.930C9—H9A0.960
C4—C51.365 (4)C9—H9B0.960
C4—H4A0.930C9—H9C0.960
C20—C221.487 (4)C22—H22A0.960
C20—C211.522 (4)C22—H22B0.960
C20—H20A0.980C22—H22C0.960
C16—C171.367 (4)
C1—N2—C14120.78 (18)C19—C23—C25114.9 (2)
C1—N2—H2A119.6C24—C23—H23A107.0
C14—N2—H2A119.6C19—C23—H23A107.0
C1—N1—C2120.68 (18)C25—C23—H23A107.0
C1—N1—H1A119.7C17—C18—C19121.5 (3)
C2—N1—H1A119.7C17—C18—H18A119.3
C3—C2—C7121.5 (2)C19—C18—H18A119.3
C3—C2—N1119.7 (2)C4—C5—C6119.7 (3)
C7—C2—N1118.8 (2)C4—C5—H5A120.2
N2—C1—N1123.3 (2)C6—C5—H5A120.2
N2—C1—H1118.3C23—C25—H25A109.5
N1—C1—H1118.3C23—C25—H25B109.5
C19—C14—C15121.5 (2)H25A—C25—H25B109.5
C19—C14—N2119.7 (2)C23—C25—H25C109.5
C15—C14—N2118.7 (2)H25A—C25—H25C109.5
C16—C15—C14117.9 (2)H25B—C25—H25C109.5
C16—C15—C20121.0 (2)C11—C13—H13A109.5
C14—C15—C20121.1 (2)C11—C13—H13B109.5
C18—C19—C14117.5 (2)H13A—C13—H13B109.5
C18—C19—C23121.8 (2)C11—C13—H13C109.5
C14—C19—C23120.6 (2)H13A—C13—H13C109.5
C6—C7—C2117.5 (3)H13B—C13—H13C109.5
C6—C7—C11120.4 (3)C11—C12—H12A109.5
C2—C7—C11122.1 (2)C11—C12—H12B109.5
C4—C3—C2117.4 (3)H12A—C12—H12B109.5
C4—C3—C8120.3 (3)C11—C12—H12C109.5
C2—C3—C8122.2 (2)H12A—C12—H12C109.5
C12—C11—C7112.1 (2)H12B—C12—H12C109.5
C12—C11—C13110.4 (3)C8—C10—H10A109.5
C7—C11—C13113.1 (3)C8—C10—H10B109.5
C12—C11—H11A107.0H10A—C10—H10B109.5
C7—C11—H11A107.0C8—C10—H10C109.5
C13—C11—H11A107.0H10A—C10—H10C109.5
C10—C8—C3111.5 (3)H10B—C10—H10C109.5
C10—C8—C9110.4 (3)C23—C24—H24A109.5
C3—C8—C9111.6 (3)C23—C24—H24B109.5
C10—C8—H8A107.7H24A—C24—H24B109.5
C3—C8—H8A107.7C23—C24—H24C109.5
C9—C8—H8A107.7H24A—C24—H24C109.5
C5—C6—C7121.6 (3)H24B—C24—H24C109.5
C5—C6—H6A119.2C20—C21—H21A109.5
C7—C6—H6A119.2C20—C21—H21B109.5
C5—C4—C3122.1 (3)H21A—C21—H21B109.5
C5—C4—H4A118.9C20—C21—H21C109.5
C3—C4—H4A118.9H21A—C21—H21C109.5
C22—C20—C15111.0 (2)H21B—C21—H21C109.5
C22—C20—C21111.7 (3)C8—C9—H9A109.5
C15—C20—C21114.2 (2)C8—C9—H9B109.5
C22—C20—H20A106.4H9A—C9—H9B109.5
C15—C20—H20A106.4C8—C9—H9C109.5
C21—C20—H20A106.4H9A—C9—H9C109.5
C17—C16—C15121.1 (3)H9B—C9—H9C109.5
C17—C16—H16A119.5C20—C22—H22A109.5
C15—C16—H16A119.5C20—C22—H22B109.5
C16—C17—C18120.5 (3)H22A—C22—H22B109.5
C16—C17—H17A119.7C20—C22—H22C109.5
C18—C17—H17A119.7H22A—C22—H22C109.5
C24—C23—C19110.5 (2)H22B—C22—H22C109.5
C24—C23—C25110.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.032.882 (4)171
N2—H2A···N2i0.862.052.910 (3)175
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H36N2
Mr364.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)24.169 (4), 12.7881 (18), 19.479 (3)
β (°) 126.735 (2)
V3)4824.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.45 × 0.34 × 0.30
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12048, 4242, 2237
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.161, 1.02
No. of reflections4242
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.032.882 (4)170.6
N2—H2A···N2i0.862.052.910 (3)174.5
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

The author thanks Saint Mary's University for funding.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrahulic, K. E., Enright, G. D., Parvez, M. & Roesler, R. (2005). J. Am. Chem. Soc. 127, 4142–4143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPerrin, C. L. (1991). The Chemistry of Amidines and Imidates, Vol. 2, edited by S. Patai & Z. Rappoport, pp. 147–229. Chichester: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006). Private communication (refcode: TEVJOU). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. J. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds