metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}bis­­[(thio­cyanato-κN)iron(III)]

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 28 June 2008; accepted 14 July 2008; online 16 July 2008)

The title compound, [Fe2(C16H14N2O2)2(NCS)2], is isostructural with the MnIII-containing analogue. Each FeIII atom is chelated by a tetra­dentate 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand and by the N atom of a thio­cyanate anion, in a square-pyramidal arrangement. The complex mol­ecules form centrosymmetric dimers, with an Fe—O contact of 2.549 (3) Å, trans to each thio­cyanate anion, completing a distorted octa­hedral coordination geometry.

Related literature

For related literature, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.]); Huang et al. (2002[Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.]); Bhadbhade & Srinivas (1993[Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.]); Bunce et al. (1998[Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.]). For the isostructural MnIII-containing compound, see: Wang et al. (2008[Wang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C16H14N2O2)2(NCS)2]

  • Mr = 380.23

  • Monoclinic, P 21 /n

  • a = 8.9231 (10) Å

  • b = 14.0779 (10) Å

  • c = 14.9716 (10) Å

  • β = 106.844 (1)°

  • V = 1800.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 (2) K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.918

  • 12796 measured reflections

  • 3191 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.180

  • S = 1.00

  • 3191 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of Schiff-base complexes has received long-lasting research interest not only because of their appealing structural and topological novelty but also due to their potential medical value derived from their antiviral and the inhibition of angiogenesis (Garnovskii et al., 1993; Huang et al., 2002). The related Fe complexes with multidentate Schiff-base ligands have aroused particular interest because this metal can exhibit several oxidation states and may provide the basis of models for active sites of biological systems (Bhadbhade & Srinivas, 1993; Bunce et al., 1998).

The title compound is isostructural with its MnIII-containing analogue (Wang et al., 2008). Each FeIII atom is chelated by a tetradentate 2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolate ligand and by the N atom of a thiocyanate anion, in a square-pyramidal arrangement. The maximum atomic deviation from the least-square plane of the equatorially located atoms, Fe1, N1, N2, O1 and O2, is 0.077 Å. The Fe—N(isothiocyanato) bond length (2.178 (4) Å) is longer than the other two Fe—N bonds (1.985 (4) and 1.988 (4) Å). The complexes form centrosymmetric dimers, with an Fe—O contact of 2.549 (3)Å trans to each thiocyanate anion, completing a distorted octahedral coordination geometry.

Related literature top

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998). For the isostructural MnIII-containing compound, see: Wang et al. (2008).

Experimental top

A mixture of iron(III) 2,4-pentanedionate (0.5 mmol), N,N'-disalicylidene-ethylenediamine (0.5 mmoL), and sodium isothiocyanate (1 mmoL) in 20 ml methanol was refluxed for two hours. The resulting solution was cooled and filtered and the filtrate was evaporated naturally at room temperature to yield brown blocks after a few days with a yield of 11%. Elemental analysis calculated: C 53.65, H 3.68, N 11.05%; found: C 53.60, H 3.64, N 11.02%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit drawn with 30% probability displacement ellipsoids for the non-H atoms.
Bis{µ-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}bis[(thiocyanato-κN)iron(III)] top
Crystal data top
[Fe2(C16H14N2O2)2(NCS)2]F(000) = 780
Mr = 380.23Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4497 reflections
a = 8.9231 (10) Åθ = 2.4–24.4°
b = 14.0779 (10) ŵ = 0.97 mm1
c = 14.9716 (10) ÅT = 293 K
β = 106.844 (1)°Block, brown
V = 1800.0 (3) Å30.12 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3191 independent reflections
Radiation source: fine-focus sealed tube2535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.893, Tmax = 0.918k = 1616
12796 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.114P)2 + 1.289P]
where P = (Fo2 + 2Fc2)/3
3191 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Fe2(C16H14N2O2)2(NCS)2]V = 1800.0 (3) Å3
Mr = 380.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9231 (10) ŵ = 0.97 mm1
b = 14.0779 (10) ÅT = 293 K
c = 14.9716 (10) Å0.12 × 0.11 × 0.09 mm
β = 106.844 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2535 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.918Rint = 0.023
12796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.00Δρmax = 1.12 e Å3
3191 reflectionsΔρmin = 0.33 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.64494 (7)0.01030 (4)0.10343 (4)0.0586 (3)
C10.9422 (5)0.0874 (3)0.2499 (3)0.0612 (10)
C20.5250 (4)0.1763 (3)0.0554 (3)0.0563 (9)
C30.5503 (5)0.2621 (3)0.0151 (4)0.0690 (11)
H30.60050.26220.03140.083*
C40.5012 (7)0.3464 (4)0.0441 (5)0.0905 (15)
H40.51900.40320.01710.109*
C50.4258 (7)0.3475 (4)0.1126 (5)0.103 (2)
H50.39390.40490.13180.124*
C60.3974 (7)0.2631 (4)0.1529 (4)0.0895 (16)
H60.34380.26380.19770.107*
C70.4493 (5)0.1778 (3)0.1262 (3)0.0665 (11)
C80.4150 (6)0.0914 (4)0.1685 (3)0.0757 (13)
H80.34160.09480.20160.091*
C90.4311 (10)0.0777 (5)0.2043 (5)0.117 (2)
H9A0.38270.06250.25280.141*
H9B0.35770.11450.15630.141*
C100.5833 (10)0.1335 (4)0.2450 (4)0.109 (2)
H10A0.56030.19860.25770.130*
H10B0.64510.10460.30270.130*
C110.7504 (8)0.2036 (4)0.1629 (4)0.0936 (18)
H110.74690.25780.19770.112*
C120.8444 (6)0.2076 (3)0.1012 (4)0.0801 (13)
C130.8633 (5)0.1309 (3)0.0459 (3)0.0684 (11)
C140.9632 (6)0.1410 (4)0.0104 (4)0.0900 (16)
H140.97840.09010.04640.108*
C151.0394 (7)0.2261 (6)0.0128 (7)0.125 (3)
H151.10520.23190.05070.150*
C161.0191 (9)0.3026 (6)0.0405 (7)0.136 (3)
H161.07060.35960.03820.163*
C170.9219 (9)0.2942 (5)0.0971 (5)0.123 (3)
H170.90760.34570.13260.148*
N10.8171 (5)0.0695 (3)0.2098 (3)0.0785 (10)
N20.6685 (6)0.1309 (3)0.1752 (3)0.0796 (11)
N30.4771 (5)0.0113 (3)0.1639 (3)0.0721 (10)
O10.5684 (3)0.09420 (17)0.02262 (18)0.0553 (6)
O20.7880 (3)0.0489 (2)0.0418 (2)0.0660 (7)
S11.11963 (15)0.11760 (11)0.30804 (10)0.0858 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0672 (4)0.0522 (4)0.0613 (4)0.0061 (2)0.0262 (3)0.0013 (2)
C10.075 (3)0.048 (2)0.065 (2)0.0050 (19)0.028 (2)0.0093 (17)
C20.053 (2)0.050 (2)0.066 (2)0.0008 (16)0.0163 (17)0.0063 (17)
C30.064 (2)0.051 (2)0.090 (3)0.0037 (18)0.020 (2)0.005 (2)
C40.087 (3)0.055 (3)0.120 (4)0.000 (2)0.016 (3)0.011 (3)
C50.104 (4)0.074 (4)0.120 (5)0.018 (3)0.014 (4)0.040 (3)
C60.084 (3)0.096 (4)0.087 (3)0.019 (3)0.023 (3)0.034 (3)
C70.056 (2)0.079 (3)0.064 (2)0.002 (2)0.0153 (19)0.021 (2)
C80.075 (3)0.095 (4)0.068 (3)0.011 (3)0.038 (2)0.021 (2)
C90.149 (6)0.116 (5)0.122 (5)0.046 (5)0.093 (5)0.003 (4)
C100.177 (7)0.081 (4)0.078 (3)0.032 (4)0.052 (4)0.008 (3)
C110.127 (5)0.056 (3)0.070 (3)0.007 (3)0.015 (3)0.014 (2)
C120.084 (3)0.067 (3)0.071 (3)0.011 (2)0.006 (2)0.001 (2)
C130.051 (2)0.065 (3)0.079 (3)0.0061 (18)0.002 (2)0.012 (2)
C140.059 (3)0.089 (4)0.120 (4)0.006 (2)0.023 (3)0.024 (3)
C150.075 (4)0.118 (6)0.164 (7)0.038 (4)0.006 (4)0.045 (5)
C160.104 (5)0.109 (6)0.156 (7)0.057 (5)0.024 (5)0.032 (5)
C170.129 (6)0.082 (4)0.117 (5)0.037 (4)0.032 (4)0.001 (3)
N10.077 (3)0.075 (2)0.082 (3)0.017 (2)0.020 (2)0.012 (2)
N20.113 (3)0.063 (2)0.057 (2)0.019 (2)0.015 (2)0.0085 (16)
N30.080 (2)0.079 (3)0.069 (2)0.0157 (19)0.040 (2)0.0052 (17)
O10.0636 (15)0.0482 (13)0.0608 (14)0.0017 (11)0.0284 (12)0.0024 (11)
O20.0625 (16)0.0566 (16)0.084 (2)0.0024 (13)0.0289 (14)0.0006 (14)
S10.0658 (7)0.0956 (9)0.0968 (9)0.0082 (6)0.0248 (6)0.0267 (7)
Geometric parameters (Å, º) top
Fe1—O21.860 (3)C9—N31.500 (7)
Fe1—O11.902 (3)C9—C101.534 (11)
Fe1—N31.985 (4)C9—H9A0.970
Fe1—N21.988 (4)C9—H9B0.970
Fe1—N12.178 (4)C10—N21.459 (7)
C1—N11.132 (5)C10—H10A0.970
C1—S11.627 (5)C10—H10B0.970
C2—O11.355 (4)C11—N21.302 (7)
C2—C71.412 (6)C11—C121.418 (8)
C2—C31.397 (6)C11—H110.930
C3—C41.378 (7)C12—C131.401 (7)
C3—H30.930C12—C171.412 (8)
C4—C51.380 (9)C13—O21.328 (5)
C4—H40.930C13—C141.400 (7)
C5—C61.388 (9)C14—C151.383 (9)
C5—H50.930C14—H140.930
C6—C71.387 (7)C15—C161.384 (13)
C6—H60.930C15—H150.930
C7—C81.445 (7)C16—C171.382 (12)
C8—N31.267 (6)C16—H160.930
C8—H80.930C17—H170.930
O2—Fe1—O194.72 (12)H9A—C9—H9B108.7
O2—Fe1—N3171.11 (14)N2—C10—C9106.7 (5)
O1—Fe1—N389.55 (14)N2—C10—H10A110.4
O2—Fe1—N292.21 (17)C9—C10—H10A110.4
O1—Fe1—N2165.26 (15)N2—C10—H10B110.4
N3—Fe1—N281.92 (19)C9—C10—H10B110.4
O2—Fe1—N194.22 (14)H10A—C10—H10B108.6
O1—Fe1—N196.51 (14)N2—C11—C12125.9 (5)
N3—Fe1—N193.03 (16)N2—C11—H11117.0
N2—Fe1—N195.94 (16)C12—C11—H11117.0
N1—C1—S1177.6 (4)C13—C12—C17119.7 (6)
O1—C2—C7122.3 (4)C13—C12—C11123.4 (4)
O1—C2—C3118.8 (4)C17—C12—C11116.9 (6)
C7—C2—C3118.9 (4)O2—C13—C14117.6 (5)
C2—C3—C4120.2 (5)O2—C13—C12123.4 (4)
C2—C3—H3119.9C14—C13—C12119.0 (5)
C4—C3—H3119.9C13—C14—C15120.5 (7)
C5—C4—C3120.7 (5)C13—C14—H14119.8
C5—C4—H4119.6C15—C14—H14119.7
C3—C4—H4119.6C16—C15—C14120.8 (8)
C4—C5—C6120.2 (5)C16—C15—H15119.6
C4—C5—H5119.9C14—C15—H15119.6
C6—C5—H5119.9C17—C16—C15119.8 (6)
C7—C6—C5119.8 (5)C17—C16—H16120.1
C7—C6—H6120.1C15—C16—H16120.1
C5—C6—H6120.1C16—C17—C12120.2 (8)
C2—C7—C6120.1 (5)C16—C17—H17119.9
C2—C7—C8121.6 (4)C12—C17—H17119.9
C6—C7—C8118.2 (4)C1—N1—Fe1151.7 (4)
N3—C8—C7125.0 (4)C11—N2—C10120.8 (5)
N3—C8—H8117.5C11—N2—Fe1124.8 (4)
C7—C8—H8117.5C10—N2—Fe1114.4 (4)
N3—C9—C10105.9 (5)C8—N3—C9123.1 (5)
N3—C9—H9A110.6C8—N3—Fe1124.1 (3)
C10—C9—H9A110.6C9—N3—Fe1112.8 (4)
N3—C9—H9B110.6C2—O1—Fe1121.1 (2)
C10—C9—H9B110.6C13—O2—Fe1130.0 (3)

Experimental details

Crystal data
Chemical formula[Fe2(C16H14N2O2)2(NCS)2]
Mr380.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.9231 (10), 14.0779 (10), 14.9716 (10)
β (°) 106.844 (1)
V3)1800.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.893, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
12796, 3191, 2535
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.180, 1.00
No. of reflections3191
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

References

First citationBhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationHuang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008). Acta Cryst. E64, m543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds