organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-2′-Phenyl­cyclo­hexa­ne­spiro-4′-(aze­pano[1,2-b]isoxazolidine)

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz

(Received 2 July 2008; accepted 14 July 2008; online 19 July 2008)

In the crystal structure of the racemic title isoxazolidine, C19H27NO, the relative stereochemistry between the phenyl group and the bridgehead H atom is shown to be syn. There are two mol­ecules in the asymmetric unit, one of which is the 7R*,13R* enanti­omer, and one of which is the 7S*,13S* enanti­omer. These enanti­omers adopt different orientations of the phenyl ring with respect to the isoxazolidine ring, with C—C—C—C torsion angles of 63.6 (4) and 86.8 (4)°, respectively. In both enanti­omers, the six-membered ring adopts a chair conformation, while the seven-membered ring adopts a twist-chair conformation.

Related literature

For related literature regarding the synthesis towards the spiro­imine unit of the spiro­lides, see: Brimble & Trzoss (2004[Brimble, M. A. & Trzoss, M. (2004). Tetrahedron, 60, 5613-5622.]); Brimble et al. (2005[Brimble, M. A., Crimmins, D. & Trzoss, M. (2005). ARKIVOC, i, 39-52.]); O'Connor et al. (2008[O'Connor, P. D., Körber, K. & Brimble, M. A. (2008). Synlett, pp. 1036-1038.]). For the crystal structure of the related 7,6-spiro­lactam unit, see: Guéret et al. (2008[Guéret, S. M., Choi, K. W., O'Connor, P. D., Boyd, P. D. W. & Brimble, M. A. (2008). Acta Cryst. E64, o1151.]). For isolation of spiro­lides from natural resources, see: Hu et al. (2001[Hu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308-312.]); MacKinnon et al. (2006[MacKinnon, S. L., Walter, J. A., Quilliam, M. A., Cembella, A. D., Leblanc, P., Burton, I. W., Hardstaff, W. R. & Lewis, N. I. (2006). J. Nat. Prod. 69, 983-987.]); Ciminiello et al. (2007[Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Tartaglione, L., Guerrini, F. & Pistocchi, R. (2007). J. Nat. Prod. 70, 1878-1883.]).

[Scheme 1]

Experimental

Crystal data
  • C19H27NO

  • Mr = 285.42

  • Triclinic, [P \overline 1]

  • a = 9.8516 (1) Å

  • b = 10.4560 (1) Å

  • c = 16.0957 (1) Å

  • α = 101.058 (1)°

  • β = 92.833 (1)°

  • γ = 96.527 (1)°

  • V = 1612.34 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 85 (2) K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.985

  • 15138 measured reflections

  • 6437 independent reflections

  • 4959 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.194

  • S = 1.06

  • 6437 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title isoxazolidine was prepared as part of a synthetic program (Brimble & Trzoss, 2004; Brimble et al. 2005; O'Connor et al., 2008 and Guéret et al., 2008) directed towards the synthesis of heterocycles related to the spiroimine unit of the spirolide family of shellfish toxins that were isolated from the culture of a toxic clone of the dinoflagellate Alexandrium ostenfeldii (Hu et al., 2001; MacKinnon et al., 2006 and Ciminiello et al., 2007). With this idea in mind, a study of the thermal-promoted 1,3-dipolar cycloaddition of a novel 7,6-spironitrone to a range of alkenes was investigated. In particular, the addition of the 7,6-spironitrone to styrene proceeded regioselectively to afford the title racemic isoxazolidine. However, establishment of the exo or endo selectivity of this 1,3-dipolar cycloaddition was required and this could not be deduced from detailed NMR studies. The crystal structure of the cycloadduct (Fig. 1) clearly indicates the syn stereochemistry between the phenyl group at C13 and the bridgehead proton at C7, thereby confirming that the 1,3-dipolar cycloaddition took place with exo selectivity.

The relative stereochemistry of the racemic isoxazolidine is shown to be 7R*,13R* and 7S*,13S* from the crystal structure. Apart from the opposite stereochemistry, the two molecules in the asymmetric unit also differ from each other in the orientation adopted by the phenyl ring relative to the adjacent isoxazolidine ring. This is shown by the different torsion angle adopted at C12–C13–C14–C15: for one enantiomer, the torsion angle is 63.6 (4)° while the torsion angle for the opposite enantiomer is 86.8 (4)°. In both molecules, the six-membered ring adopts a chair conformation while the seven-membered ring adopts a twist-chair conformation. A view of the molecular packing is depicted in Fig. 2.

Related literature top

For related literature regarding the synthesis towards the spiroimine unit of the spirolides, see: Brimble & Trzoss (2004); Brimble et al. (2005); O'Connor et al. (2008). For the crystal structure of the related 7,6-spirolactam unit, see: Guéret et al. (2008). For isolation of spirolides from natural resources, see: Hu et al. (2001); MacKinnon et al. (2006); Ciminiello et al. (2007).

Experimental top

8-Azoniaspiro[5.6]dodec-7-en-8-olate (550 mg, 1.96 mmol) and styrene (905 µl, 7.9 mmol) were dissolved in toluene (10 ml) under an argon atmosphere and the solution was heated under reflux for 12 h. The reaction mixture was cooled to room temperature and the solvent was concentrated in vacuo. The residue was purified directly by flash chromatography (hexane-ethyl acetate 10:1) to give the title compound as a white solid (353 mg, 63%). Recrystallization from diethyl ether afforded white needles.

Refinement top

H atoms were placed in calculated positions and were refined using a riding model (C–H = 0.93 or 0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C). Two peaks are present in the final difference density: 1.21 eÅ-3 at a distance of 1.11 Å from O, and 1.02 eÅ-3 at a distance of 1.20 Å from C14.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of (7R*,13R* and 7S*,13S*)-isoxazolidine with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted.
[Figure 2] Fig. 2. Molecular packing of racemic isoxazolidine. H atoms are omitted. The origin of the unit cell is labelled as O while cell axes are labelled as a (red), b (green) and c (blue), respectively. [Symmetry code: (ii) 1 - x, 1 - y, 1 - z.]
(±)-2'-Phenylcyclohexanespiro-4'-(azepano[1,2-b]isoxazolidine) top
Crystal data top
C19H27NOZ = 4
Mr = 285.42F(000) = 624
Triclinic, P1Dx = 1.176 Mg m3
Hall symbol: -P 1Melting point: 338.8(7) K
a = 9.8516 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4560 (1) ÅCell parameters from 6437 reflections
c = 16.0957 (1) Åθ = 1.3–26.4°
α = 101.058 (1)°µ = 0.07 mm1
β = 92.833 (1)°T = 85 K
γ = 96.527 (1)°Needles, white
V = 1612.34 (2) Å30.32 × 0.24 × 0.22 mm
Data collection top
Siemens SMART CCD
diffractometer
6437 independent reflections
Radiation source: fine-focus sealed tube4959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.978, Tmax = 0.985k = 1312
15138 measured reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 4.1372P]
where P = (Fo2 + 2Fc2)/3
6437 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H27NOγ = 96.527 (1)°
Mr = 285.42V = 1612.34 (2) Å3
Triclinic, P1Z = 4
a = 9.8516 (1) ÅMo Kα radiation
b = 10.4560 (1) ŵ = 0.07 mm1
c = 16.0957 (1) ÅT = 85 K
α = 101.058 (1)°0.32 × 0.24 × 0.22 mm
β = 92.833 (1)°
Data collection top
Siemens SMART CCD
diffractometer
6437 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4959 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.026
15138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.06Δρmax = 1.21 e Å3
6437 reflectionsΔρmin = 0.32 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.6455 (2)0.6154 (2)0.33169 (13)0.0268 (5)
N0.6590 (3)0.5526 (3)0.24237 (15)0.0226 (6)
C10.8405 (3)0.4282 (3)0.17312 (17)0.0161 (6)
C20.9653 (3)0.5340 (3)0.1897 (2)0.0243 (7)
H2A0.93460.61890.18940.029*
H2B1.00850.53680.24560.029*
C31.0710 (3)0.5099 (3)0.1238 (2)0.0303 (7)
H3A1.03130.51660.06870.036*
H3B1.14960.57680.13900.036*
C41.1179 (3)0.3742 (3)0.1186 (2)0.0347 (8)
H4A1.16780.37140.17150.042*
H4B1.17960.35920.07350.042*
C50.9964 (3)0.2656 (3)0.1013 (2)0.0319 (8)
H5A1.02880.18200.10330.038*
H5B0.95420.26030.04480.038*
C60.8892 (3)0.2914 (3)0.1667 (2)0.0252 (7)
H6A0.92800.28420.22190.030*
H6B0.81070.22450.15110.030*
C70.7425 (3)0.4433 (3)0.24678 (18)0.0219 (6)
H7A0.67980.36160.23970.026*
C80.5176 (3)0.5018 (3)0.20965 (18)0.0213 (6)
H8A0.45850.56900.22640.026*
H8B0.48650.42670.23410.026*
C90.5073 (3)0.4610 (3)0.11317 (18)0.0229 (6)
H9A0.41570.41690.09490.028*
H9B0.51860.53990.08960.028*
C100.6094 (3)0.3717 (3)0.07546 (19)0.0238 (7)
H10A0.58580.34370.01500.029*
H10B0.60100.29390.10030.029*
C110.7593 (3)0.4353 (3)0.08922 (18)0.0228 (6)
H11A0.76090.52720.08610.027*
H11B0.80800.39460.04230.027*
C120.8092 (3)0.4744 (3)0.33864 (19)0.0249 (7)
H12A0.76850.41390.37190.030*
H12B0.90710.47050.33930.030*
C130.7780 (3)0.6141 (3)0.37195 (19)0.0239 (7)
H13A0.84520.67750.35350.029*
C140.7717 (3)0.6482 (3)0.46735 (19)0.0254 (7)
C150.8925 (3)0.6960 (3)0.51785 (19)0.0275 (7)
H15A0.97480.70750.49260.033*
C160.8910 (3)0.7266 (3)0.60540 (19)0.0271 (7)
H16A0.97220.75780.63870.033*
C170.7693 (4)0.7109 (3)0.6432 (2)0.0324 (8)
H17A0.76830.73230.70200.039*
C180.6486 (4)0.6633 (4)0.5938 (2)0.0414 (9)
H18A0.56660.65290.61940.050*
C190.6496 (3)0.6311 (4)0.5058 (2)0.0333 (8)
H19A0.56850.59810.47280.040*
O'0.8141 (2)0.0639 (2)0.33601 (12)0.0231 (5)
N'0.7585 (2)0.0078 (2)0.24822 (14)0.0186 (5)
C1'0.5197 (3)0.0548 (3)0.18622 (17)0.0159 (6)
C2'0.4734 (3)0.0835 (3)0.20648 (17)0.0172 (6)
H2'A0.44260.09890.26340.021*
H2'B0.55120.14870.20510.021*
C3'0.3578 (3)0.1009 (3)0.14386 (18)0.0210 (6)
H3'A0.33220.18880.15920.025*
H3'B0.38920.08980.08700.025*
C4'0.2331 (3)0.0004 (3)0.1454 (2)0.0250 (7)
H4'A0.19800.01480.20120.030*
H4'B0.16140.00960.10450.030*
C5'0.2713 (3)0.1402 (3)0.1242 (2)0.0234 (6)
H5'A0.29400.15930.06550.028*
H5'B0.19300.20190.13040.028*
C6'0.3936 (3)0.1592 (3)0.18186 (19)0.0190 (6)
H6'A0.42050.24540.16150.023*
H6'B0.36440.15690.23870.023*
C7'0.6255 (3)0.0735 (3)0.25610 (17)0.0161 (6)
H7'A0.64040.16610.24610.019*
C8'0.8619 (3)0.0742 (3)0.21325 (19)0.0227 (6)
H8'A0.85820.15160.23840.027*
H8'B0.95250.02530.22720.027*
C9'0.8360 (3)0.1158 (3)0.11659 (18)0.0221 (6)
H9'A0.89630.18050.09650.027*
H9'B0.86110.03980.09160.027*
C10'0.6885 (3)0.1737 (3)0.08409 (18)0.0196 (6)
H10C0.66010.24540.11220.024*
H10D0.68630.20950.02370.024*
C11'0.5856 (3)0.0725 (3)0.09918 (17)0.0181 (6)
H11C0.51240.09760.05440.022*
H11D0.63190.01210.09360.022*
C12'0.5939 (3)0.0310 (3)0.34989 (18)0.0207 (6)
H12C0.50040.01090.35430.025*
H12D0.60830.09870.38180.025*
C13'0.6976 (4)0.0927 (4)0.3809 (2)0.0321 (8)
H13B0.66200.16890.36460.039*
C14'0.7431 (3)0.1240 (3)0.47534 (19)0.0287 (7)
C15'0.8144 (4)0.0435 (4)0.5145 (2)0.0370 (8)
H15B0.83050.03710.48320.044*
C16'0.8617 (4)0.0779 (4)0.5967 (3)0.0420 (9)
H16B0.91150.02220.62090.050*
C17'0.8369 (4)0.1928 (4)0.6440 (2)0.0367 (9)
H17B0.86910.21420.70090.044*
C18'0.7657 (4)0.2789 (4)0.6110 (2)0.0399 (9)
H18B0.74930.35750.64490.048*
C19'0.7168 (4)0.2452 (4)0.5227 (2)0.0374 (9)
H19B0.66930.30180.49790.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0293 (12)0.0325 (12)0.0177 (11)0.0086 (10)0.0025 (9)0.0005 (9)
N0.0224 (13)0.0262 (14)0.0178 (12)0.0041 (10)0.0022 (10)0.0001 (10)
C10.0192 (14)0.0138 (13)0.0145 (13)0.0037 (11)0.0001 (11)0.0005 (10)
C20.0219 (15)0.0196 (15)0.0301 (17)0.0010 (12)0.0013 (13)0.0046 (12)
C30.0240 (16)0.0380 (19)0.0284 (17)0.0063 (14)0.0009 (13)0.0120 (14)
C40.0202 (16)0.042 (2)0.0372 (19)0.0034 (14)0.0091 (14)0.0053 (16)
C50.0310 (18)0.0240 (17)0.040 (2)0.0096 (14)0.0065 (15)0.0000 (14)
C60.0241 (16)0.0220 (16)0.0305 (17)0.0053 (12)0.0016 (13)0.0066 (13)
C70.0270 (16)0.0177 (14)0.0201 (15)0.0011 (12)0.0006 (12)0.0024 (11)
C80.0174 (14)0.0245 (15)0.0220 (15)0.0021 (12)0.0010 (12)0.0048 (12)
C90.0191 (15)0.0273 (16)0.0207 (15)0.0011 (12)0.0024 (12)0.0041 (12)
C100.0263 (16)0.0249 (16)0.0183 (15)0.0028 (13)0.0030 (12)0.0007 (12)
C110.0240 (16)0.0260 (16)0.0176 (14)0.0020 (12)0.0030 (12)0.0024 (12)
C120.0262 (16)0.0267 (16)0.0215 (15)0.0017 (13)0.0001 (12)0.0057 (12)
C130.0226 (15)0.0272 (16)0.0211 (15)0.0014 (13)0.0016 (12)0.0037 (12)
C140.0248 (16)0.0300 (17)0.0189 (15)0.0024 (13)0.0021 (12)0.0007 (13)
C150.0239 (16)0.0377 (19)0.0204 (15)0.0019 (14)0.0027 (12)0.0052 (13)
C160.0330 (18)0.0259 (16)0.0204 (15)0.0001 (13)0.0059 (13)0.0034 (12)
C170.043 (2)0.0352 (19)0.0162 (15)0.0062 (15)0.0028 (14)0.0023 (13)
C180.0274 (18)0.068 (3)0.0247 (18)0.0012 (17)0.0085 (14)0.0000 (17)
C190.0243 (17)0.050 (2)0.0194 (16)0.0016 (15)0.0021 (13)0.0039 (15)
O'0.0212 (11)0.0300 (12)0.0135 (10)0.0037 (9)0.0021 (8)0.0023 (8)
N'0.0180 (12)0.0218 (13)0.0128 (11)0.0035 (10)0.0024 (9)0.0001 (9)
C1'0.0177 (14)0.0144 (13)0.0136 (13)0.0011 (11)0.0004 (11)0.0002 (10)
C2'0.0204 (14)0.0150 (14)0.0152 (13)0.0010 (11)0.0024 (11)0.0013 (10)
C3'0.0253 (15)0.0190 (15)0.0193 (14)0.0073 (12)0.0020 (12)0.0027 (11)
C4'0.0186 (15)0.0265 (16)0.0295 (17)0.0065 (12)0.0008 (12)0.0030 (13)
C5'0.0167 (14)0.0229 (16)0.0276 (16)0.0021 (12)0.0034 (12)0.0018 (12)
C6'0.0171 (14)0.0162 (14)0.0227 (15)0.0008 (11)0.0004 (11)0.0032 (11)
C7'0.0164 (14)0.0135 (13)0.0179 (14)0.0001 (10)0.0021 (11)0.0030 (10)
C8'0.0166 (14)0.0283 (16)0.0217 (15)0.0027 (12)0.0007 (12)0.0018 (12)
C9'0.0187 (15)0.0252 (16)0.0213 (15)0.0013 (12)0.0026 (12)0.0021 (12)
C10'0.0199 (14)0.0213 (15)0.0160 (14)0.0035 (12)0.0017 (11)0.0009 (11)
C11'0.0174 (14)0.0209 (15)0.0149 (13)0.0030 (11)0.0007 (11)0.0009 (11)
C12'0.0222 (15)0.0231 (15)0.0154 (14)0.0000 (12)0.0004 (11)0.0026 (11)
C13'0.0323 (18)0.0367 (19)0.0263 (17)0.0035 (15)0.0017 (14)0.0043 (14)
C14'0.0202 (15)0.044 (2)0.0161 (15)0.0059 (14)0.0006 (12)0.0018 (13)
C15'0.035 (2)0.0290 (18)0.047 (2)0.0034 (15)0.0019 (16)0.0073 (16)
C16'0.041 (2)0.043 (2)0.043 (2)0.0023 (17)0.0005 (17)0.0170 (18)
C17'0.0293 (18)0.058 (2)0.0209 (17)0.0085 (17)0.0013 (14)0.0122 (16)
C18'0.035 (2)0.0308 (19)0.045 (2)0.0044 (15)0.0185 (17)0.0152 (16)
C19'0.0246 (17)0.045 (2)0.050 (2)0.0079 (15)0.0074 (16)0.0244 (18)
Geometric parameters (Å, º) top
O—C131.431 (4)O'—C13'1.417 (4)
O—N1.480 (3)O'—N'1.474 (3)
N—C81.466 (4)N'—C8'1.469 (4)
N—C71.493 (4)N'—C7'1.503 (3)
C1—C21.533 (4)C1'—C2'1.546 (4)
C1—C61.545 (4)C1'—C6'1.547 (4)
C1—C111.554 (4)C1'—C7'1.551 (4)
C1—C71.561 (4)C1'—C11'1.561 (4)
C2—C31.529 (4)C2'—C3'1.533 (4)
C2—H2A0.970C2'—H2'A0.970
C2—H2B0.970C2'—H2'B0.970
C3—C41.529 (5)C3'—C4'1.532 (4)
C3—H3A0.970C3'—H3'A0.970
C3—H3B0.970C3'—H3'B0.970
C4—C51.529 (5)C4'—C5'1.530 (4)
C4—H4A0.970C4'—H4'A0.970
C4—H4B0.970C4'—H4'B0.970
C5—C61.537 (4)C5'—C6'1.538 (4)
C5—H5A0.970C5'—H5'A0.970
C5—H5B0.970C5'—H5'B0.970
C6—H6A0.970C6'—H6'A0.970
C6—H6B0.970C6'—H6'B0.970
C7—C121.547 (4)C7'—C12'1.547 (4)
C7—H7A0.980C7'—H7'A0.980
C8—C91.525 (4)C8'—C9'1.533 (4)
C8—H8A0.970C8'—H8'A0.970
C8—H8B0.970C8'—H8'B0.970
C9—C101.519 (4)C9'—C10'1.535 (4)
C9—H9A0.970C9'—H9'A0.970
C9—H9B0.970C9'—H9'B0.970
C10—C111.536 (4)C10'—C11'1.542 (4)
C10—H10A0.970C10'—H10C0.970
C10—H10B0.970C10'—H10D0.970
C11—H11A0.970C11'—H11C0.970
C11—H11B0.970C11'—H11D0.970
C12—C131.527 (4)C12'—C13'1.539 (4)
C12—H12A0.970C12'—H12C0.970
C12—H12B0.970C12'—H12D0.970
C13—C141.514 (4)C13'—C14'1.525 (4)
C13—H13A0.980C13'—H13B0.980
C14—C191.390 (4)C14'—C15'1.376 (5)
C14—C151.393 (4)C14'—C19'1.407 (5)
C15—C161.385 (4)C15'—C16'1.348 (5)
C15—H15A0.930C15'—H15B0.930
C16—C171.379 (5)C16'—C17'1.348 (5)
C16—H16A0.930C16'—H16B0.930
C17—C181.383 (5)C17'—C18'1.370 (6)
C17—H17A0.930C17'—H17B0.930
C18—C191.392 (5)C18'—C19'1.441 (5)
C18—H18A0.930C18'—H18B0.930
C19—H19A0.930C19'—H19B0.930
C13—O—N103.2 (2)C13'—O'—N'104.6 (2)
C8—N—O103.8 (2)C8'—N'—O'103.8 (2)
C8—N—C7111.2 (2)C8'—N'—C7'111.8 (2)
O—N—C7105.4 (2)O'—N'—C7'105.51 (19)
C2—C1—C6109.4 (2)C2'—C1'—C6'109.1 (2)
C2—C1—C11109.5 (2)C2'—C1'—C7'111.1 (2)
C6—C1—C11110.1 (2)C6'—C1'—C7'108.3 (2)
C2—C1—C7112.5 (2)C2'—C1'—C11'108.8 (2)
C6—C1—C7106.4 (2)C6'—C1'—C11'110.1 (2)
C11—C1—C7108.9 (2)C7'—C1'—C11'109.4 (2)
C3—C2—C1112.9 (3)C3'—C2'—C1'112.7 (2)
C3—C2—H2A109.0C3'—C2'—H2'A109.1
C1—C2—H2A109.0C1'—C2'—H2'A109.1
C3—C2—H2B109.0C3'—C2'—H2'B109.1
C1—C2—H2B109.0C1'—C2'—H2'B109.1
H2A—C2—H2B107.8H2'A—C2'—H2'B107.8
C4—C3—C2111.2 (3)C4'—C3'—C2'110.0 (2)
C4—C3—H3A109.4C4'—C3'—H3'A109.7
C2—C3—H3A109.4C2'—C3'—H3'A109.7
C4—C3—H3B109.4C4'—C3'—H3'B109.7
C2—C3—H3B109.4C2'—C3'—H3'B109.7
H3A—C3—H3B108.0H3'A—C3'—H3'B108.2
C3—C4—C5111.5 (3)C5'—C4'—C3'110.9 (2)
C3—C4—H4A109.3C5'—C4'—H4'A109.5
C5—C4—H4A109.3C3'—C4'—H4'A109.5
C3—C4—H4B109.3C5'—C4'—H4'B109.5
C5—C4—H4B109.3C3'—C4'—H4'B109.5
H4A—C4—H4B108.0H4'A—C4'—H4'B108.1
C4—C5—C6111.4 (3)C4'—C5'—C6'112.1 (2)
C4—C5—H5A109.3C4'—C5'—H5'A109.2
C6—C5—H5A109.3C6'—C5'—H5'A109.2
C4—C5—H5B109.3C4'—C5'—H5'B109.2
C6—C5—H5B109.3C6'—C5'—H5'B109.2
H5A—C5—H5B108.0H5'A—C5'—H5'B107.9
C5—C6—C1112.9 (3)C5'—C6'—C1'114.1 (2)
C5—C6—H6A109.0C5'—C6'—H6'A108.7
C1—C6—H6A109.0C1'—C6'—H6'A108.7
C5—C6—H6B109.0C5'—C6'—H6'B108.7
C1—C6—H6B109.0C1'—C6'—H6'B108.7
H6A—C6—H6B107.8H6'A—C6'—H6'B107.6
N—C7—C12104.7 (2)N'—C7'—C12'104.8 (2)
N—C7—C1110.6 (2)N'—C7'—C1'108.3 (2)
C12—C7—C1117.3 (2)C12'—C7'—C1'118.0 (2)
N—C7—H7A108.0N'—C7'—H7'A108.5
C12—C7—H7A108.0C12'—C7'—H7'A108.5
C1—C7—H7A108.0C1'—C7'—H7'A108.5
N—C8—C9111.0 (2)N'—C8'—C9'110.4 (2)
N—C8—H8A109.4N'—C8'—H8'A109.6
C9—C8—H8A109.4C9'—C8'—H8'A109.6
N—C8—H8B109.4N'—C8'—H8'B109.6
C9—C8—H8B109.4C9'—C8'—H8'B109.6
H8A—C8—H8B108.0H8'A—C8'—H8'B108.1
C10—C9—C8116.2 (3)C8'—C9'—C10'115.6 (2)
C10—C9—H9A108.2C8'—C9'—H9'A108.4
C8—C9—H9A108.2C10'—C9'—H9'A108.4
C10—C9—H9B108.2C8'—C9'—H9'B108.4
C8—C9—H9B108.2C10'—C9'—H9'B108.4
H9A—C9—H9B107.4H9'A—C9'—H9'B107.5
C9—C10—C11114.3 (2)C9'—C10'—C11'113.3 (2)
C9—C10—H10A108.7C9'—C10'—H10C108.9
C11—C10—H10A108.7C11'—C10'—H10C108.9
C9—C10—H10B108.7C9'—C10'—H10D108.9
C11—C10—H10B108.7C11'—C10'—H10D108.9
H10A—C10—H10B107.6H10C—C10'—H10D107.7
C10—C11—C1117.6 (2)C10'—C11'—C1'116.6 (2)
C10—C11—H11A107.9C10'—C11'—H11C108.1
C1—C11—H11A107.9C1'—C11'—H11C108.1
C10—C11—H11B107.9C10'—C11'—H11D108.1
C1—C11—H11B107.9C1'—C11'—H11D108.1
H11A—C11—H11B107.2H11C—C11'—H11D107.3
C13—C12—C7102.9 (2)C13'—C12'—C7'102.6 (2)
C13—C12—H12A111.2C13'—C12'—H12C111.3
C7—C12—H12A111.2C7'—C12'—H12C111.3
C13—C12—H12B111.2C13'—C12'—H12D111.3
C7—C12—H12B111.2C7'—C12'—H12D111.3
H12A—C12—H12B109.1H12C—C12'—H12D109.2
O—C13—C14109.4 (2)O'—C13'—C14'107.4 (3)
O—C13—C12103.1 (2)O'—C13'—C12'103.4 (3)
C14—C13—C12114.1 (3)C14'—C13'—C12'116.3 (3)
O—C13—H13A110.0O'—C13'—H13B109.8
C14—C13—H13A110.0C14'—C13'—H13B109.8
C12—C13—H13A110.0C12'—C13'—H13B109.8
C19—C14—C15119.2 (3)C15'—C14'—C19'119.1 (3)
C19—C14—C13121.9 (3)C15'—C14'—C13'123.3 (3)
C15—C14—C13118.8 (3)C19'—C14'—C13'117.4 (3)
C16—C15—C14120.4 (3)C16'—C15'—C14'122.0 (4)
C16—C15—H15A119.8C16'—C15'—H15B119.0
C14—C15—H15A119.8C14'—C15'—H15B119.0
C17—C16—C15120.1 (3)C17'—C16'—C15'120.2 (4)
C17—C16—H16A119.9C17'—C16'—H16B119.9
C15—C16—H16A119.9C15'—C16'—H16B119.9
C16—C17—C18120.0 (3)C16'—C17'—C18'122.1 (3)
C16—C17—H17A120.0C16'—C17'—H17B118.9
C18—C17—H17A120.0C18'—C17'—H17B118.9
C17—C18—C19120.2 (3)C17'—C18'—C19'118.6 (3)
C17—C18—H18A119.9C17'—C18'—H18B120.7
C19—C18—H18A119.9C19'—C18'—H18B120.7
C14—C19—C18120.0 (3)C14'—C19'—C18'117.9 (3)
C14—C19—H19A120.0C14'—C19'—H19B121.0
C18—C19—H19A120.0C18'—C19'—H19B121.0

Experimental details

Crystal data
Chemical formulaC19H27NO
Mr285.42
Crystal system, space groupTriclinic, P1
Temperature (K)85
a, b, c (Å)9.8516 (1), 10.4560 (1), 16.0957 (1)
α, β, γ (°)101.058 (1), 92.833 (1), 96.527 (1)
V3)1612.34 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15138, 6437, 4959
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.194, 1.06
No. of reflections6437
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.32

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank Tania Groutso for help with the data collection and the Royal Society of New Zealand for the award of a Marsden Funds Grant (to DC).

References

First citationBrimble, M. A., Crimmins, D. & Trzoss, M. (2005). ARKIVOC, i, 39–52.  Google Scholar
First citationBrimble, M. A. & Trzoss, M. (2004). Tetrahedron, 60, 5613–5622.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCiminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Tartaglione, L., Guerrini, F. & Pistocchi, R. (2007). J. Nat. Prod. 70, 1878–1883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuéret, S. M., Choi, K. W., O'Connor, P. D., Boyd, P. D. W. & Brimble, M. A. (2008). Acta Cryst. E64, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod. 64, 308–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacKinnon, S. L., Walter, J. A., Quilliam, M. A., Cembella, A. D., Leblanc, P., Burton, I. W., Hardstaff, W. R. & Lewis, N. I. (2006). J. Nat. Prod. 69, 983–987.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationO'Connor, P. D., Körber, K. & Brimble, M. A. (2008). Synlett, pp. 1036–1038.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds