organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Chloro­meth­yl)quinolin-8-yl acetate

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 4 July 2008; accepted 13 July 2008; online 19 July 2008)

The title compound, C12H10ClNO2, crystallizes with two independent mol­ecules in the asymmetric unit; these are approximate mirror images of each other. In each mol­ecule, the chloro­methyl and acetate groups lie on the same side of the quinoline ring system, with dihedral angles between the ring plane and the plane of the acetate group of 82.0 (1) and −79.2 (1)°. The C—C—C—Cl torsion angles for the chloro­methyl groups of the two mol­ecules are 80.9 (2) and −83.1 (2)°.

Related literature

For related literature, see: Chen & Shi (1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.]); Marian (1966[Marian, K. (1966). J. Heterocycl. Chem. 3, 275-277.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClNO2

  • Mr = 235.66

  • Triclinic, [P \overline 1]

  • a = 9.2299 (10) Å

  • b = 11.0042 (13) Å

  • c = 11.2429 (13) Å

  • α = 105.073 (4)°

  • β = 94.105 (1)°

  • γ = 90.815 (2)°

  • V = 1099.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.949

  • 5721 measured reflections

  • 3843 independent reflections

  • 3247 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.04

  • 3843 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives are amongst the most extensively investigated ligands in coordination chemistry (Chen & Shi, 1998). In the course of our studies on 8-hydroxyquinoline derivatives, we have synthesised the title compound, which is a key intermediate in the synthesis of 8-hydroxyquinoline derivatives.

Related literature top

For related literature, see: Chen & Shi (1998); Marian (1966).

Experimental top

5-(Chloromethyl)quinolin-8-ol hydrochloride (0.0217 mol) (Marian, 1966) and acetic anhydride (25 ml) were added to a 100 ml flask, and refluxed for 6 h. After cooling to room temperature, the mixture was poured into cool water (500 ml). The precipitate was washed with a large amount of water, collected by filtration, and dried to produce the title compound as a grey solid. Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution over a period of 2 d.

Refinement top

All H atoms were placed in geometrically idealized positions with C(sp2)—H = 0.93, C(methyl)—H = 0.96, and C(methylene)—H = 0.97 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) (or 1.5Ueq for methyl H).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules in the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.
5-(Chloromethyl)quinolin-8-yl acetate top
Crystal data top
C12H10ClNO2Z = 4
Mr = 235.66F(000) = 488
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Melting point: 400 K
a = 9.2299 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0042 (13) ÅCell parameters from 3502 reflections
c = 11.2429 (13) Åθ = 2.2–28.2°
α = 105.073 (4)°µ = 0.33 mm1
β = 94.105 (1)°T = 295 K
γ = 90.815 (2)°Block, colorless
V = 1099.2 (2) Å30.22 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed tube3247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.931, Tmax = 0.949k = 1213
5721 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3054P]
where P = (Fo2 + 2Fc2)/3
3843 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10ClNO2γ = 90.815 (2)°
Mr = 235.66V = 1099.2 (2) Å3
Triclinic, P1Z = 4
a = 9.2299 (10) ÅMo Kα radiation
b = 11.0042 (13) ŵ = 0.33 mm1
c = 11.2429 (13) ÅT = 295 K
α = 105.073 (4)°0.22 × 0.18 × 0.16 mm
β = 94.105 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3247 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.949Rint = 0.015
5721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3843 reflectionsΔρmin = 0.21 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45143 (5)0.67427 (5)0.57622 (4)0.05362 (15)
Cl20.04871 (6)0.86602 (4)0.57393 (5)0.05615 (16)
O10.52846 (13)1.00138 (12)0.17138 (11)0.0470 (3)
O20.74973 (16)1.02523 (15)0.27180 (14)0.0658 (4)
O30.03984 (14)0.32842 (11)0.17193 (12)0.0491 (3)
O40.25535 (16)0.36297 (15)0.28101 (15)0.0665 (4)
N10.60339 (17)0.75273 (15)0.11659 (13)0.0479 (4)
N20.11712 (16)0.54988 (15)0.11822 (13)0.0459 (4)
C10.6356 (2)0.6329 (2)0.09146 (18)0.0565 (5)
H10.69420.60230.02700.068*
C20.5871 (2)0.54890 (18)0.15594 (19)0.0566 (5)
H20.61320.46520.13380.068*
C30.5019 (2)0.59019 (17)0.25069 (17)0.0478 (4)
H30.46890.53510.29380.057*
C40.46384 (17)0.71804 (15)0.28332 (15)0.0376 (4)
C50.37582 (18)0.77105 (17)0.38191 (15)0.0400 (4)
C60.3457 (2)0.89608 (18)0.40698 (17)0.0472 (4)
H60.28830.93050.47130.057*
C70.3996 (2)0.97351 (17)0.33765 (17)0.0471 (4)
H70.37821.05840.35620.057*
C80.48297 (18)0.92409 (16)0.24364 (15)0.0393 (4)
C90.51836 (17)0.79539 (16)0.21255 (15)0.0374 (4)
C100.3155 (2)0.6929 (2)0.45894 (18)0.0502 (5)
H10A0.28360.61080.40650.060*
H10B0.23190.73320.49790.060*
C110.6674 (2)1.04787 (17)0.19412 (17)0.0462 (4)
C120.6965 (3)1.1301 (2)0.1117 (2)0.0681 (6)
H12A0.63991.20410.13320.102*
H12B0.67041.08510.02740.102*
H12C0.79791.15420.12130.102*
C130.1446 (2)0.6560 (2)0.09004 (18)0.0542 (5)
H130.20510.65360.02680.065*
C140.0896 (2)0.7722 (2)0.14814 (19)0.0557 (5)
H140.11190.84370.12260.067*
C150.0033 (2)0.77951 (17)0.24219 (17)0.0485 (4)
H150.03320.85630.28260.058*
C160.03079 (17)0.66915 (16)0.27844 (15)0.0382 (4)
C170.11980 (18)0.66651 (17)0.37671 (16)0.0418 (4)
C180.1492 (2)0.55457 (19)0.40301 (17)0.0502 (5)
H180.20710.55330.46710.060*
C190.0938 (2)0.44153 (18)0.33514 (17)0.0490 (4)
H190.11590.36610.35350.059*
C200.00775 (18)0.44301 (16)0.24263 (16)0.0411 (4)
C210.02808 (17)0.55580 (16)0.21112 (14)0.0373 (4)
C220.1815 (2)0.78404 (19)0.45259 (18)0.0527 (5)
H22A0.26760.76260.48870.063*
H22B0.20980.83850.40010.063*
C230.1777 (2)0.29749 (18)0.19924 (18)0.0472 (4)
C240.2111 (3)0.1743 (2)0.1156 (2)0.0684 (6)
H24A0.21250.18230.03260.103*
H24B0.13800.11230.11830.103*
H24C0.30440.14860.14170.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0594 (3)0.0552 (3)0.0514 (3)0.0014 (2)0.0012 (2)0.0249 (2)
Cl20.0605 (3)0.0447 (3)0.0550 (3)0.0013 (2)0.0009 (2)0.0007 (2)
O10.0496 (7)0.0482 (7)0.0475 (7)0.0055 (6)0.0013 (6)0.0223 (6)
O20.0525 (8)0.0773 (10)0.0691 (9)0.0129 (7)0.0105 (7)0.0268 (8)
O30.0510 (7)0.0381 (7)0.0513 (7)0.0055 (5)0.0045 (6)0.0015 (5)
O40.0501 (8)0.0702 (10)0.0749 (10)0.0054 (7)0.0100 (7)0.0154 (8)
N10.0495 (9)0.0516 (9)0.0409 (8)0.0002 (7)0.0078 (7)0.0081 (7)
N20.0447 (8)0.0536 (9)0.0374 (8)0.0020 (7)0.0028 (6)0.0082 (7)
C10.0581 (12)0.0583 (13)0.0464 (11)0.0065 (10)0.0095 (9)0.0000 (9)
C20.0626 (13)0.0410 (10)0.0609 (12)0.0075 (9)0.0013 (10)0.0043 (9)
C30.0507 (11)0.0403 (10)0.0521 (11)0.0017 (8)0.0036 (9)0.0140 (8)
C40.0341 (8)0.0393 (9)0.0383 (8)0.0027 (7)0.0046 (7)0.0105 (7)
C50.0329 (9)0.0483 (10)0.0406 (9)0.0023 (7)0.0018 (7)0.0161 (8)
C60.0464 (10)0.0529 (11)0.0434 (10)0.0076 (8)0.0101 (8)0.0124 (8)
C70.0525 (11)0.0387 (9)0.0500 (10)0.0065 (8)0.0045 (8)0.0110 (8)
C80.0389 (9)0.0414 (9)0.0390 (9)0.0044 (7)0.0031 (7)0.0150 (7)
C90.0345 (9)0.0417 (9)0.0344 (8)0.0029 (7)0.0029 (7)0.0090 (7)
C100.0404 (10)0.0624 (12)0.0529 (11)0.0043 (8)0.0020 (8)0.0247 (9)
C110.0500 (11)0.0407 (10)0.0449 (10)0.0059 (8)0.0058 (9)0.0054 (8)
C120.0832 (16)0.0607 (13)0.0636 (13)0.0206 (11)0.0130 (12)0.0212 (11)
C130.0519 (11)0.0681 (14)0.0444 (10)0.0022 (10)0.0078 (9)0.0171 (9)
C140.0616 (12)0.0541 (12)0.0553 (12)0.0078 (9)0.0003 (10)0.0231 (10)
C150.0516 (11)0.0388 (10)0.0530 (11)0.0007 (8)0.0022 (9)0.0103 (8)
C160.0338 (8)0.0393 (9)0.0379 (9)0.0004 (7)0.0052 (7)0.0060 (7)
C170.0352 (9)0.0435 (10)0.0423 (9)0.0017 (7)0.0002 (7)0.0044 (7)
C180.0477 (11)0.0554 (11)0.0463 (10)0.0038 (8)0.0102 (8)0.0095 (9)
C190.0541 (11)0.0433 (10)0.0509 (10)0.0041 (8)0.0037 (9)0.0149 (8)
C200.0403 (9)0.0363 (9)0.0420 (9)0.0025 (7)0.0052 (7)0.0041 (7)
C210.0315 (8)0.0426 (9)0.0347 (8)0.0008 (7)0.0042 (7)0.0062 (7)
C220.0436 (10)0.0556 (12)0.0526 (11)0.0065 (8)0.0040 (8)0.0022 (9)
C230.0489 (11)0.0473 (10)0.0504 (11)0.0072 (8)0.0062 (9)0.0207 (9)
C240.0816 (16)0.0563 (13)0.0728 (14)0.0253 (11)0.0222 (12)0.0209 (11)
Geometric parameters (Å, º) top
Cl1—C101.8072 (19)C10—H10A0.970
Cl2—C221.807 (2)C10—H10B0.970
O1—C111.356 (2)C11—C121.488 (3)
O1—C81.399 (2)C12—H12A0.960
O2—C111.194 (2)C12—H12B0.960
O3—C231.357 (2)C12—H12C0.960
O3—C201.400 (2)C13—C141.397 (3)
O4—C231.193 (2)C13—H130.930
N1—C11.318 (3)C14—C151.355 (3)
N1—C91.367 (2)C14—H140.930
N2—C131.313 (3)C15—C161.416 (3)
N2—C211.364 (2)C15—H150.930
C1—C21.402 (3)C16—C211.418 (2)
C1—H10.930C16—C171.429 (2)
C2—C31.356 (3)C17—C181.367 (3)
C2—H20.930C17—C221.497 (2)
C3—C41.415 (2)C18—C191.404 (3)
C3—H30.930C18—H180.930
C4—C91.417 (2)C19—C201.356 (3)
C4—C51.427 (2)C19—H190.930
C5—C61.367 (3)C20—C211.417 (2)
C5—C101.497 (2)C22—H22A0.970
C6—C71.404 (3)C22—H22B0.970
C6—H60.930C23—C241.486 (3)
C7—C81.354 (2)C24—H24A0.960
C7—H70.930C24—H24B0.960
C8—C91.417 (2)C24—H24C0.960
C11—O1—C8117.15 (14)H12A—C12—H12C109.5
C23—O3—C20117.00 (14)H12B—C12—H12C109.5
C1—N1—C9116.68 (16)N2—C13—C14124.74 (18)
C13—N2—C21116.52 (16)N2—C13—H13117.6
N1—C1—C2123.99 (18)C14—C13—H13117.6
N1—C1—H1118.0C15—C14—C13119.15 (19)
C2—C1—H1118.0C15—C14—H14120.4
C3—C2—C1119.73 (18)C13—C14—H14120.4
C3—C2—H2120.1C14—C15—C16119.46 (18)
C1—C2—H2120.1C14—C15—H15120.3
C2—C3—C4119.31 (18)C16—C15—H15120.3
C2—C3—H3120.3C15—C16—C21116.61 (16)
C4—C3—H3120.3C15—C16—C17123.98 (16)
C9—C4—C3116.66 (16)C21—C16—C17119.42 (16)
C9—C4—C5119.63 (15)C18—C17—C16119.63 (16)
C3—C4—C5123.71 (16)C18—C17—C22118.87 (17)
C6—C5—C4119.42 (16)C16—C17—C22121.50 (17)
C6—C5—C10119.06 (16)C17—C18—C19121.30 (17)
C4—C5—C10121.51 (16)C17—C18—H18119.4
C5—C6—C7121.35 (16)C19—C18—H18119.4
C5—C6—H6119.3C20—C19—C18119.64 (18)
C7—C6—H6119.3C20—C19—H19120.2
C8—C7—C6119.72 (17)C18—C19—H19120.2
C8—C7—H7120.1C19—C20—O3118.62 (16)
C6—C7—H7120.1C19—C20—C21122.02 (16)
C7—C8—O1118.65 (16)O3—C20—C21119.26 (15)
C7—C8—C9121.91 (16)N2—C21—C20118.54 (15)
O1—C8—C9119.34 (15)N2—C21—C16123.49 (16)
N1—C9—C4123.63 (16)C20—C21—C16117.98 (15)
N1—C9—C8118.41 (15)C17—C22—Cl2110.29 (13)
C4—C9—C8117.96 (15)C17—C22—H22A109.6
C5—C10—Cl1110.54 (12)Cl2—C22—H22A109.6
C5—C10—H10A109.5C17—C22—H22B109.6
Cl1—C10—H10A109.5Cl2—C22—H22B109.6
C5—C10—H10B109.5H22A—C22—H22B108.1
Cl1—C10—H10B109.5O4—C23—O3122.23 (17)
H10A—C10—H10B108.1O4—C23—C24127.61 (19)
O2—C11—O1122.74 (17)O3—C23—C24110.15 (18)
O2—C11—C12127.10 (19)C23—C24—H24A109.5
O1—C11—C12110.15 (17)C23—C24—H24B109.5
C11—C12—H12A109.5H24A—C24—H24B109.5
C11—C12—H12B109.5C23—C24—H24C109.5
H12A—C12—H12B109.5H24A—C24—H24C109.5
C11—C12—H12C109.5H24B—C24—H24C109.5
C9—N1—C1—C20.6 (3)C21—N2—C13—C140.0 (3)
N1—C1—C2—C30.2 (3)N2—C13—C14—C151.2 (3)
C1—C2—C3—C40.3 (3)C13—C14—C15—C160.8 (3)
C2—C3—C4—C90.2 (2)C14—C15—C16—C210.7 (2)
C2—C3—C4—C5179.53 (17)C14—C15—C16—C17179.58 (17)
C9—C4—C5—C60.2 (2)C15—C16—C17—C18178.55 (17)
C3—C4—C5—C6179.55 (16)C21—C16—C17—C181.2 (2)
C9—C4—C5—C10179.84 (15)C15—C16—C17—C221.8 (3)
C3—C4—C5—C100.4 (2)C21—C16—C17—C22178.48 (15)
C4—C5—C6—C70.0 (3)C16—C17—C18—C190.1 (3)
C10—C5—C6—C7179.96 (17)C22—C17—C18—C19179.78 (17)
C5—C6—C7—C80.2 (3)C17—C18—C19—C200.9 (3)
C6—C7—C8—O1176.36 (15)C18—C19—C20—O3176.61 (16)
C6—C7—C8—C90.1 (3)C18—C19—C20—C210.3 (3)
C11—O1—C8—C7102.11 (19)C23—O3—C20—C19100.93 (19)
C11—O1—C8—C981.32 (19)C23—O3—C20—C2182.69 (19)
C1—N1—C9—C40.6 (3)C13—N2—C21—C20178.39 (16)
C1—N1—C9—C8179.11 (16)C13—N2—C21—C161.7 (2)
C3—C4—C9—N10.2 (2)C19—C20—C21—N2178.97 (16)
C5—C4—C9—N1180.00 (15)O3—C20—C21—N24.8 (2)
C3—C4—C9—C8179.53 (15)C19—C20—C21—C160.9 (2)
C5—C4—C9—C80.3 (2)O3—C20—C21—C16175.30 (14)
C7—C8—C9—N1179.84 (16)C15—C16—C21—N22.0 (2)
O1—C8—C9—N13.7 (2)C17—C16—C21—N2178.21 (15)
C7—C8—C9—C40.1 (2)C15—C16—C21—C20178.08 (15)
O1—C8—C9—C4176.54 (14)C17—C16—C21—C201.7 (2)
C6—C5—C10—Cl199.09 (17)C18—C17—C22—Cl296.61 (18)
C4—C5—C10—Cl180.86 (18)C16—C17—C22—Cl283.08 (19)
C8—O1—C11—O20.1 (3)C20—O3—C23—O41.3 (3)
C8—O1—C11—C12178.64 (16)C20—O3—C23—C24179.61 (16)

Experimental details

Crystal data
Chemical formulaC12H10ClNO2
Mr235.66
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.2299 (10), 11.0042 (13), 11.2429 (13)
α, β, γ (°)105.073 (4), 94.105 (1), 90.815 (2)
V3)1099.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
5721, 3843, 3247
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.04
No. of reflections3843
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.  Web of Science CrossRef CAS Google Scholar
First citationMarian, K. (1966). J. Heterocycl. Chem. 3, 275–277.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds