organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro­phen­yl)-1-(3-meth­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2008; accepted 14 July 2008; online 19 July 2008)

The title compound, C16H13ClO2, adopts an E configuration with respect to the double bond of the propenone unit. The two benzene rings are twisted slightly from each other, making a dihedral angle of 7.14 (5)°. The mol­ecules are arranged in stacks, in which adjacent mol­ecules are related by inversion symmetry and form ππ inter­actions with a centroid–centroid distance of 3.7098 (6) Å. C—H⋯O and C—H⋯π inter­actions are formed between neighbouring mol­ecules.

Related literature

For related literature, see: Chantrapromma et al. (2005[Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.], 2006[Chantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875-o877.]); Fun et al. (2006[Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Dharmaprakash et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.], 2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO2

  • Mr = 272.71

  • Triclinic, [P \overline 1]

  • a = 7.7352 (2) Å

  • b = 8.1405 (2) Å

  • c = 10.7411 (2) Å

  • α = 87.392 (1)°

  • β = 82.147 (1)°

  • γ = 74.794 (1)°

  • V = 646.52 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100.0 (1) K

  • 0.38 × 0.30 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.955

  • 17497 measured reflections

  • 4314 independent reflections

  • 3644 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 4314 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.50 3.3887 (13) 161
C4—H4A⋯O1ii 0.93 2.57 3.3003 (13) 136
C16—H16B⋯O1iii 0.96 2.58 3.4899 (14) 158
C16—H16CCg1iv 0.96 2.82 3.6137 (14) 135
Symmetry codes: (i) x+1, y-1, z-1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As a part of our ongoing investigation of non-linear optical (NLO) compounds (Chantrapromma et al., 2005, 2006; Fun et al., 2006; Patil, Fun et al., 2007; Patil, Dharmaprakash et al., 2006, 2007), the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

The molecule exhibits an E configuration with respect to the C7=C8 double bond, the torsion angle being C7—C8—C9—C10 = -166.3 (9)°. The dihedral angle between the two phenyl rings is 7.14 (5)°, indicating that they are slightly twisted from each other. The molecules are interconnected by weak C—H···O interactions and the packing is further consolidated by C–H···π and ππ interactions between the C1—C6 (centroid Cg1) and C10—C15 (centroid Cg2) rings: Cg1···Cg2i = 3.7098 (6) Å [symmetry code: (i) 2 - x, -y, -z].

Related literature top

For related literature, see: Chantrapromma et al. (2005, 2006); Fun et al. (2006); Patil, Fun et al. (2007); Patil, Dharmaprakash et al. (2006, 2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

2-Chlorobenzaldehyde (0.01 mol, 1.13 g) in ethanol (20 ml) was mixed with 3-methoxyacetophenone (0.01 mol, 1.37 ml) in 20 ml ethanol and the mixture was treated with 10 ml of 10% sodium hydroxide solution and stirred at room temperature for 8 h. The precipitate obtained was poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered, dried and recrystallized from N,N-dimethylformamide by slow evaporation.

Refinement top

H atoms were positioned geometrically with C—H = 0.93Å or Cmethyl—H = 0.96 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5eq(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C16H13ClO2Z = 2
Mr = 272.71F(000) = 284
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7352 (2) ÅCell parameters from 7792 reflections
b = 8.1405 (2) Åθ = 2.2–37.5°
c = 10.7411 (2) ŵ = 0.29 mm1
α = 87.392 (1)°T = 100 K
β = 82.147 (1)°Block, colourless
γ = 74.794 (1)°0.38 × 0.30 × 0.16 mm
V = 646.52 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube3644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 31.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.899, Tmax = 0.955k = 1112
17497 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1689P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13ClO2γ = 74.794 (1)°
Mr = 272.71V = 646.52 (3) Å3
Triclinic, P1Z = 2
a = 7.7352 (2) ÅMo Kα radiation
b = 8.1405 (2) ŵ = 0.29 mm1
c = 10.7411 (2) ÅT = 100 K
α = 87.392 (1)°0.38 × 0.30 × 0.16 mm
β = 82.147 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3644 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.955Rint = 0.025
17497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
4314 reflectionsΔρmin = 0.23 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15204 (4)0.08594 (3)0.41471 (2)0.02216 (8)
O10.78728 (11)0.44819 (10)0.05788 (8)0.02200 (17)
O20.46589 (11)0.70028 (11)0.36344 (8)0.02281 (17)
C11.29054 (14)0.01282 (13)0.30363 (10)0.01529 (19)
C21.44112 (15)0.14294 (13)0.34590 (10)0.0184 (2)
H2A1.46780.17050.43070.022*
C31.55059 (15)0.23075 (13)0.25988 (11)0.0196 (2)
H3A1.65170.31780.28700.024*
C41.51011 (15)0.18945 (13)0.13323 (11)0.0189 (2)
H4A1.58300.24950.07550.023*
C51.36046 (14)0.05817 (13)0.09349 (10)0.0172 (2)
H5A1.33480.03110.00860.021*
C61.24650 (14)0.03518 (12)0.17720 (10)0.01485 (19)
C71.09255 (14)0.17825 (13)0.13473 (10)0.01589 (19)
H7A1.04070.25260.19570.019*
C81.02124 (15)0.20974 (13)0.01471 (10)0.0173 (2)
H8A1.06670.13410.04770.021*
C90.87148 (14)0.36241 (13)0.02113 (10)0.01643 (19)
C100.82784 (14)0.40997 (13)0.15679 (10)0.01584 (19)
C110.94385 (16)0.34122 (14)0.24498 (11)0.0207 (2)
H11A1.05180.26040.22100.025*
C120.89719 (18)0.39431 (15)0.36938 (11)0.0248 (2)
H12A0.97480.34890.42840.030*
C130.73691 (17)0.51359 (14)0.40576 (11)0.0218 (2)
H13A0.70620.54740.48920.026*
C140.62110 (15)0.58335 (13)0.31749 (10)0.0173 (2)
C150.66548 (14)0.53249 (13)0.19298 (10)0.01602 (19)
H15A0.58820.57930.13410.019*
C160.34703 (16)0.78256 (16)0.27587 (12)0.0253 (2)
H16A0.24450.86190.31940.038*
H16B0.30700.69890.23550.038*
H16C0.40960.84230.21370.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02040 (14)0.02714 (14)0.01654 (13)0.00027 (10)0.00537 (9)0.00122 (9)
O10.0219 (4)0.0231 (4)0.0173 (4)0.0008 (3)0.0021 (3)0.0019 (3)
O20.0212 (4)0.0263 (4)0.0173 (4)0.0009 (3)0.0018 (3)0.0059 (3)
C10.0140 (4)0.0170 (4)0.0154 (4)0.0045 (4)0.0027 (4)0.0004 (3)
C20.0166 (5)0.0204 (5)0.0177 (5)0.0041 (4)0.0005 (4)0.0049 (4)
C30.0155 (5)0.0170 (4)0.0249 (5)0.0014 (4)0.0019 (4)0.0049 (4)
C40.0168 (5)0.0179 (5)0.0223 (5)0.0030 (4)0.0061 (4)0.0004 (4)
C50.0162 (5)0.0197 (5)0.0159 (5)0.0044 (4)0.0027 (4)0.0019 (4)
C60.0129 (4)0.0159 (4)0.0162 (5)0.0043 (3)0.0014 (3)0.0022 (3)
C70.0137 (4)0.0161 (4)0.0181 (5)0.0038 (3)0.0019 (4)0.0023 (3)
C80.0173 (5)0.0150 (4)0.0184 (5)0.0029 (4)0.0000 (4)0.0006 (4)
C90.0152 (5)0.0162 (4)0.0176 (5)0.0046 (4)0.0005 (4)0.0023 (3)
C100.0168 (5)0.0158 (4)0.0154 (4)0.0056 (4)0.0005 (4)0.0015 (3)
C110.0201 (5)0.0191 (5)0.0218 (5)0.0019 (4)0.0042 (4)0.0028 (4)
C120.0303 (6)0.0228 (5)0.0204 (5)0.0022 (5)0.0100 (5)0.0007 (4)
C130.0286 (6)0.0216 (5)0.0151 (5)0.0058 (4)0.0025 (4)0.0027 (4)
C140.0185 (5)0.0166 (4)0.0168 (5)0.0058 (4)0.0013 (4)0.0028 (4)
C150.0163 (5)0.0172 (4)0.0150 (5)0.0056 (4)0.0009 (4)0.0008 (3)
C160.0173 (5)0.0288 (6)0.0272 (6)0.0010 (4)0.0022 (4)0.0070 (5)
Geometric parameters (Å, º) top
Cl1—C11.7400 (11)C8—C91.4836 (15)
O1—C91.2208 (14)C8—H8A0.930
O2—C141.3684 (13)C9—C101.4952 (14)
O2—C161.4264 (15)C10—C111.3915 (15)
C1—C21.3917 (14)C10—C151.4028 (14)
C1—C61.4018 (14)C11—C121.3933 (16)
C2—C31.3849 (16)C11—H11A0.930
C2—H2A0.930C12—C131.3796 (17)
C3—C41.3899 (16)C12—H12A0.930
C3—H3A0.930C13—C141.3929 (16)
C4—C51.3863 (15)C13—H13A0.930
C4—H4A0.930C14—C151.3886 (14)
C5—C61.4021 (15)C15—H15A0.930
C5—H5A0.930C16—H16A0.960
C6—C71.4680 (14)C16—H16B0.960
C7—C81.3391 (15)C16—H16C0.960
C7—H7A0.930
C14—O2—C16117.57 (9)O1—C9—C10120.76 (10)
C2—C1—C6122.55 (10)C8—C9—C10118.14 (9)
C2—C1—Cl1116.93 (8)C11—C10—C15120.12 (10)
C6—C1—Cl1120.49 (8)C11—C10—C9122.44 (10)
C3—C2—C1119.02 (10)C15—C10—C9117.41 (9)
C3—C2—H2A120.5C10—C11—C12119.56 (10)
C1—C2—H2A120.5C10—C11—H11A120.2
C2—C3—C4120.35 (10)C12—C11—H11A120.2
C2—C3—H3A119.8C13—C12—C11120.58 (11)
C4—C3—H3A119.8C13—C12—H12A119.7
C5—C4—C3119.61 (10)C11—C12—H12A119.7
C5—C4—H4A120.2C12—C13—C14119.96 (10)
C3—C4—H4A120.2C12—C13—H13A120.0
C4—C5—C6122.09 (10)C14—C13—H13A120.0
C4—C5—H5A119.0O2—C14—C15124.45 (10)
C6—C5—H5A119.0O2—C14—C13115.23 (10)
C1—C6—C5116.37 (9)C15—C14—C13120.32 (10)
C1—C6—C7122.05 (9)C14—C15—C10119.46 (10)
C5—C6—C7121.56 (9)C14—C15—H15A120.3
C8—C7—C6124.89 (10)C10—C15—H15A120.3
C8—C7—H7A117.6O2—C16—H16A109.5
C6—C7—H7A117.6O2—C16—H16B109.5
C7—C8—C9121.58 (10)H16A—C16—H16B109.5
C7—C8—H8A119.2O2—C16—H16C109.5
C9—C8—H8A119.2H16A—C16—H16C109.5
O1—C9—C8121.09 (10)H16B—C16—H16C109.5
C6—C1—C2—C31.08 (15)O1—C9—C10—C11164.94 (10)
Cl1—C1—C2—C3176.96 (8)C8—C9—C10—C1114.25 (15)
C1—C2—C3—C40.12 (16)O1—C9—C10—C1513.15 (15)
C2—C3—C4—C50.79 (16)C8—C9—C10—C15167.66 (9)
C3—C4—C5—C60.30 (16)C15—C10—C11—C120.30 (16)
C2—C1—C6—C51.52 (15)C9—C10—C11—C12178.33 (10)
Cl1—C1—C6—C5176.45 (7)C10—C11—C12—C130.30 (18)
C2—C1—C6—C7176.86 (9)C11—C12—C13—C140.69 (18)
Cl1—C1—C6—C75.17 (13)C16—O2—C14—C153.86 (15)
C4—C5—C6—C10.82 (15)C16—O2—C14—C13176.68 (10)
C4—C5—C6—C7177.57 (10)C12—C13—C14—O2179.96 (10)
C1—C6—C7—C8165.91 (10)C12—C13—C14—C150.48 (17)
C5—C6—C7—C815.79 (15)O2—C14—C15—C10179.32 (9)
C6—C7—C8—C9176.74 (9)C13—C14—C15—C100.11 (15)
C7—C8—C9—O112.94 (16)C11—C10—C15—C140.50 (15)
C7—C8—C9—C10166.25 (9)C9—C10—C15—C14178.64 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.503.3887 (13)161
C4—H4A···O1ii0.932.573.3003 (13)136
C16—H16B···O1iii0.962.583.4899 (14)158
C16—H16C···Cg1iv0.962.823.6137 (14)135
Symmetry codes: (i) x+1, y1, z1; (ii) x+1, y1, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13ClO2
Mr272.71
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7352 (2), 8.1405 (2), 10.7411 (2)
α, β, γ (°)87.392 (1), 82.147 (1), 74.794 (1)
V3)646.52 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.38 × 0.30 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.899, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
17497, 4314, 3644
Rint0.025
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.06
No. of reflections4314
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.503.3887 (13)161.1
C4—H4A···O1ii0.932.573.3003 (13)136.1
C16—H16B···O1iii0.962.583.4899 (14)158.4
C16—H16C···Cg1iv0.962.823.6137 (14)135
Symmetry codes: (i) x+1, y1, z1; (ii) x+1, y1, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z.
 

Footnotes

Permanent address : Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. This work was also supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. & Karalai, C. (2005). Acta Cryst. E61, o2096–o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. & Fun, H.-K. (2006). Acta Cryst. E62, o875–o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Rodwatcharapiban, P., Jindawong, B. & Chantrapromma, S. (2006). Acta Cryst. E62, o2725–o2727.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds