metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Z)-2-Cyano-2-(2-pyrid­yl)vin­yl]­ferrocene

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 22 June 2008; accepted 14 July 2008; online 19 July 2008)

In the title compound, [Fe(C5H5)(C13H9N2)], the dihedral angle between the substituted cyclo­penta­dienyl plane and the plane of the pyridine ring is 8.43 (14)°. The double bond adopts a Z configuration. In the crystal structure, weak C—H⋯N inter­actions link the molecules into a zigzag chain. A weak intramolecular C—H⋯N hydrogen bond is also present.

Related literature

For the chemistry of ferrocene, see: Chen et al. (2006[Chen, W., Mbafor, W., Roberts, S. M. & Whittall, J. (2006). J. Am. Chem. Soc. 128, 3922-3923.]). For representative ferrocene derivatives, see: Jiao et al. (2003[Jiao, J., Long, G. J., Grandjean, F., Beatty, A. M. & Fehlner, T. P. (2003). J. Am. Chem. Soc. 125, 7522-7523.]); Mancheno et al. (2004[Mancheno, O. G., Arrayas, R. G. & Carretero, J. C. (2004). J. Am. Chem. Soc. 126, 456-457.]). For similar compounds, see: Boyd & Paauwe (2006[Boyd, P. D. W. & Paauwe, J. D. (2006). Acta Cryst. E62, m2153-m2155.]); Shao et al. (2005[Shao, L., Hu, Y., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, m1837-m1839.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H9N2)]

  • Mr = 314.16

  • Monoclinic, P 21 /n

  • a = 11.105 (2) Å

  • b = 10.716 (2) Å

  • c = 12.675 (3) Å

  • β = 106.95 (3)°

  • V = 1442.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.725, Tmax = 0.900

  • 14799 measured reflections

  • 3311 independent reflections

  • 2564 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 1.07

  • 3311 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯N2 0.93 2.41 2.804 (3) 105
C4—H4A⋯N1i 0.98 2.62 3.538 (4) 156
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The Fe···Cg1 and Fe···Cg2 distances are 1.6548 (16)Å and 1.6445 (12)Å respectively and the Cg1··· Fe··· Cg2 angle is 179.55 (8)°, where Cg1 and Cg2 are the centroids of the unsubstituted and substituted cyclopentadienyl rings. The double bond (C16C17) exhibits a cis configuration and the pyridine plane makes an angle of 8.43 (14)Å with the substituted cyclopentadienyl ring. The planar cyclopentadienyl rings of the ferrocenyl unit are nearly parallel to each other [the interplanar angle is 1.33 (17)°]. The crystal structure is stabilized by weak intramolecular C—H···N interactions. Fig 2 shows that the molecules assemble as zigzag chains in the crystal structure along the a axis, formed by weak intermolecular C—H···N hydrogen bonds (Table 1).

Related literature top

For the chemistry of ferrocene, see: Chen et al. (2006). For representative ferrocene derivatives, see: Jiao et al. (2003); Mancheno et al. (2004). For similar compounds, see: Boyd & Paauwe (2006); Shao et al. (2005).

Experimental top

1 ml pyrrolidine was added to the mixture of formylferrocene (2.15 g, 0.01 mol) and 2-pyridineacetonitrile (1.18 g, 0.01 mol) in dichloromethane (100 ml). The mixture was stirred at room temperature for 5 h. After removing the solvent under reduced pressure, the residue was collected and dried in a vacuum desiccator. This crude product was purified by chromatography on silica gel, with petroleum ether and ethyl as eluant. Brownish red single crystals suitable for X-ray analysis were obtained by slow evaporation of ether at room temperature after several hours.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrojen bond are shown as dashed lines
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the a axis.
1-[(Z)-2-Cyano-2-(2-pyridyl)vinyl]ferrocene top
Crystal data top
[Fe(C5H5)(C13H9N2)]F(000) = 648
Mr = 314.16Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12734 reflections
a = 11.105 (2) Åθ = 6.7–55.3°
b = 10.716 (2) ŵ = 1.04 mm1
c = 12.675 (3) ÅT = 293 K
β = 106.95 (3)°Prism, red brown
V = 1442.9 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.725, Tmax = 0.900l = 1616
14799 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.4341P]
where P = (Fo2 + 2Fc2)/3
3311 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C5H5)(C13H9N2)]V = 1442.9 (5) Å3
Mr = 314.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.105 (2) ŵ = 1.04 mm1
b = 10.716 (2) ÅT = 293 K
c = 12.675 (3) Å0.30 × 0.20 × 0.10 mm
β = 106.95 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2564 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.900Rint = 0.045
14799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
3311 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.19959 (3)0.79543 (3)0.08768 (3)0.03864 (12)
C100.1744 (2)0.6098 (2)0.0568 (2)0.0452 (5)
H10A0.17030.54560.11080.054*
C90.2868 (2)0.6523 (2)0.03368 (18)0.0400 (5)
C150.6436 (2)0.5798 (2)0.15481 (19)0.0422 (5)
C170.5244 (2)0.6339 (2)0.08206 (18)0.0404 (5)
C160.4110 (2)0.6083 (2)0.09516 (19)0.0419 (5)
H16A0.41240.55390.15260.050*
N20.63206 (19)0.5064 (2)0.23633 (19)0.0559 (6)
C180.5387 (2)0.7169 (3)0.0022 (2)0.0523 (6)
C80.2495 (2)0.7467 (2)0.04956 (19)0.0444 (5)
H8A0.30560.79370.08200.053*
C70.1167 (2)0.7601 (3)0.0764 (2)0.0489 (6)
H7A0.06560.81920.13010.059*
N10.5562 (3)0.7837 (3)0.0659 (2)0.0831 (9)
C140.7600 (2)0.6058 (3)0.1397 (2)0.0545 (6)
H1A0.76580.65680.08200.065*
C50.3262 (2)0.8697 (3)0.2228 (2)0.0551 (7)
H5A0.41380.84270.25320.066*
C110.8554 (3)0.4798 (3)0.2947 (3)0.0659 (8)
H11A0.92600.44430.34410.079*
C130.8671 (2)0.5547 (3)0.2116 (3)0.0658 (8)
H13A0.94600.57140.20320.079*
C40.2841 (3)0.9625 (2)0.1432 (2)0.0570 (7)
H4A0.33621.01230.10860.068*
C60.0708 (2)0.6760 (2)0.0113 (2)0.0494 (6)
H6A0.01720.66640.01220.059*
C20.1158 (3)0.8840 (4)0.1894 (4)0.0946 (13)
H2A0.02980.87000.19270.114*
C120.7372 (3)0.4577 (3)0.3038 (3)0.0667 (8)
H12A0.72980.40580.36040.080*
C30.2238 (4)0.8212 (3)0.2518 (2)0.0751 (10)
H3A0.22680.75560.30630.090*
C10.1528 (3)0.9719 (3)0.1227 (3)0.0840 (11)
H1B0.09691.02940.07070.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03100 (18)0.0435 (2)0.0417 (2)0.00034 (14)0.01115 (13)0.00617 (15)
C100.0451 (13)0.0435 (13)0.0463 (13)0.0074 (10)0.0122 (10)0.0034 (11)
C90.0417 (12)0.0401 (12)0.0412 (12)0.0010 (10)0.0167 (10)0.0059 (10)
C150.0434 (13)0.0364 (12)0.0505 (14)0.0016 (10)0.0195 (11)0.0089 (10)
C170.0461 (13)0.0351 (12)0.0445 (13)0.0016 (10)0.0204 (10)0.0062 (10)
C160.0459 (13)0.0381 (12)0.0454 (13)0.0026 (10)0.0193 (10)0.0023 (10)
N20.0445 (12)0.0576 (13)0.0678 (14)0.0062 (10)0.0198 (11)0.0123 (11)
C180.0431 (14)0.0598 (17)0.0593 (16)0.0034 (12)0.0233 (12)0.0040 (13)
C80.0453 (13)0.0511 (13)0.0397 (12)0.0000 (11)0.0170 (11)0.0011 (11)
C70.0461 (14)0.0572 (15)0.0388 (13)0.0002 (11)0.0051 (11)0.0016 (11)
N10.0676 (17)0.100 (2)0.090 (2)0.0035 (15)0.0367 (15)0.0364 (17)
C140.0470 (14)0.0577 (16)0.0645 (17)0.0010 (12)0.0255 (13)0.0014 (13)
C50.0505 (14)0.0611 (17)0.0459 (14)0.0000 (13)0.0016 (12)0.0139 (13)
C110.0457 (15)0.0678 (19)0.081 (2)0.0107 (14)0.0126 (14)0.0006 (16)
C130.0404 (14)0.075 (2)0.085 (2)0.0026 (14)0.0225 (14)0.0074 (17)
C40.0566 (16)0.0460 (15)0.0618 (17)0.0087 (12)0.0072 (13)0.0111 (13)
C60.0359 (12)0.0571 (16)0.0512 (14)0.0097 (11)0.0066 (11)0.0082 (12)
C20.058 (2)0.114 (3)0.126 (3)0.019 (2)0.050 (2)0.073 (3)
C120.0573 (17)0.068 (2)0.0741 (19)0.0057 (14)0.0184 (15)0.0180 (15)
C30.107 (3)0.079 (2)0.0500 (17)0.017 (2)0.0393 (18)0.0222 (15)
C10.064 (2)0.061 (2)0.106 (3)0.0237 (16)0.0094 (19)0.0369 (19)
Geometric parameters (Å, º) top
Fe1—C102.031 (2)C8—C71.421 (3)
Fe1—C22.032 (3)C8—H8A0.9800
Fe1—C52.034 (2)C7—C61.414 (4)
Fe1—C92.036 (2)C7—H7A0.9800
Fe1—C32.037 (3)C14—C131.383 (4)
Fe1—C82.042 (2)C14—H1A0.9300
Fe1—C42.048 (3)C5—C31.393 (4)
Fe1—C72.050 (2)C5—C41.397 (4)
Fe1—C62.052 (2)C5—H5A0.9800
Fe1—C12.044 (3)C11—C131.361 (4)
C10—C61.411 (3)C11—C121.372 (4)
C10—C91.438 (3)C11—H11A0.9300
C10—H10A0.9800C13—H13A0.9300
C9—C81.432 (3)C4—C11.408 (4)
C9—C161.450 (3)C4—H4A0.9800
C15—N21.334 (3)C6—H6A0.9800
C15—C141.389 (3)C2—C11.404 (5)
C15—C171.492 (3)C2—C31.401 (5)
C17—C161.346 (3)C2—H2A0.9800
C17—C181.433 (3)C12—H12A0.9300
C16—H16A0.9300C3—H3A0.9800
N2—C121.336 (3)C1—H1B0.9800
C18—N11.138 (3)
C10—Fe1—C2121.13 (14)C17—C16—H16A114.9
C10—Fe1—C5124.61 (11)C9—C16—H16A114.9
C2—Fe1—C567.36 (12)C15—N2—C12117.6 (2)
C10—Fe1—C941.40 (9)N1—C18—C17176.5 (3)
C2—Fe1—C9156.35 (17)C7—C8—C9107.8 (2)
C5—Fe1—C9107.32 (10)C7—C8—Fe169.98 (14)
C10—Fe1—C3107.43 (12)C9—C8—Fe169.22 (13)
C2—Fe1—C340.27 (14)C7—C8—H8A126.1
C5—Fe1—C340.03 (12)C9—C8—H8A126.1
C9—Fe1—C3120.76 (13)Fe1—C8—H8A126.1
C10—Fe1—C868.99 (10)C6—C7—C8108.7 (2)
C2—Fe1—C8161.54 (16)C6—C7—Fe169.92 (14)
C5—Fe1—C8121.64 (11)C8—C7—Fe169.38 (14)
C9—Fe1—C841.13 (9)C6—C7—H7A125.6
C3—Fe1—C8156.49 (13)C8—C7—H7A125.6
C10—Fe1—C4161.07 (10)Fe1—C7—H7A125.6
C2—Fe1—C467.80 (14)C13—C14—C15119.1 (3)
C5—Fe1—C440.01 (11)C13—C14—H1A120.5
C9—Fe1—C4123.96 (10)C15—C14—H1A120.5
C3—Fe1—C467.64 (12)C3—C5—C4109.2 (3)
C8—Fe1—C4107.79 (11)C3—C5—Fe170.08 (16)
C10—Fe1—C768.15 (10)C4—C5—Fe170.54 (14)
C2—Fe1—C7125.25 (14)C3—C5—H5A125.4
C5—Fe1—C7157.24 (11)C4—C5—H5A125.4
C9—Fe1—C768.70 (10)Fe1—C5—H5A125.4
C3—Fe1—C7161.43 (13)C13—C11—C12118.5 (3)
C8—Fe1—C740.64 (9)C13—C11—H11A120.8
C4—Fe1—C7122.35 (11)C12—C11—H11A120.8
C10—Fe1—C640.43 (9)C11—C13—C14119.1 (3)
C2—Fe1—C6108.25 (12)C11—C13—H13A120.5
C5—Fe1—C6161.08 (11)C14—C13—H13A120.5
C9—Fe1—C668.88 (10)C5—C4—C1107.2 (3)
C3—Fe1—C6124.75 (12)C5—C4—Fe169.45 (15)
C8—Fe1—C668.49 (10)C1—C4—Fe169.68 (16)
C4—Fe1—C6157.37 (11)C5—C4—H4A126.4
C7—Fe1—C640.34 (10)C1—C4—H4A126.4
C10—Fe1—C1156.70 (13)Fe1—C4—H4A126.4
C2—Fe1—C140.31 (16)C10—C6—C7108.0 (2)
C5—Fe1—C167.21 (12)C10—C6—Fe168.98 (13)
C9—Fe1—C1161.07 (15)C7—C6—Fe169.74 (14)
C3—Fe1—C167.60 (15)C10—C6—H6A126.0
C8—Fe1—C1124.84 (15)C7—C6—H6A126.0
C4—Fe1—C140.26 (12)Fe1—C6—H6A126.0
C7—Fe1—C1108.88 (13)C1—C2—C3108.0 (3)
C6—Fe1—C1122.26 (12)C1—C2—Fe170.29 (18)
C6—C10—C9108.5 (2)C3—C2—Fe170.05 (17)
C6—C10—Fe170.59 (14)C1—C2—H2A126.0
C9—C10—Fe169.48 (13)C3—C2—H2A126.0
C6—C10—H10A125.7Fe1—C2—H2A126.0
C9—C10—H10A125.7N2—C12—C11123.9 (3)
Fe1—C10—H10A125.7N2—C12—H12A118.0
C8—C9—C10107.0 (2)C11—C12—H12A118.0
C8—C9—C16130.6 (2)C5—C3—C2107.6 (3)
C10—C9—C16122.2 (2)C5—C3—Fe169.89 (16)
C8—C9—Fe169.65 (13)C2—C3—Fe169.68 (19)
C10—C9—Fe169.11 (13)C5—C3—H3A126.2
C16—C9—Fe1122.35 (16)C2—C3—H3A126.2
N2—C15—C14121.9 (2)Fe1—C3—H3A126.2
N2—C15—C17116.1 (2)C2—C1—C4108.0 (3)
C14—C15—C17122.0 (2)C2—C1—Fe169.40 (18)
C16—C17—C18122.0 (2)C4—C1—Fe170.06 (15)
C16—C17—C15122.5 (2)C2—C1—H1B126.0
C18—C17—C15115.5 (2)C4—C1—H1B126.0
C17—C16—C9130.1 (2)Fe1—C1—H1B126.0
C2—Fe1—C10—C681.7 (2)C3—Fe1—C5—C4119.9 (3)
C5—Fe1—C10—C6164.22 (16)C8—Fe1—C5—C479.87 (19)
C9—Fe1—C10—C6119.4 (2)C7—Fe1—C5—C446.5 (4)
C3—Fe1—C10—C6123.55 (18)C6—Fe1—C5—C4162.1 (3)
C8—Fe1—C10—C681.09 (16)C1—Fe1—C5—C438.1 (2)
C4—Fe1—C10—C6164.7 (3)C12—C11—C13—C140.0 (4)
C7—Fe1—C10—C637.29 (15)C15—C14—C13—C110.4 (4)
C1—Fe1—C10—C649.9 (4)C3—C5—C4—C10.1 (3)
C2—Fe1—C10—C9158.91 (18)Fe1—C5—C4—C159.75 (18)
C5—Fe1—C10—C976.36 (17)C3—C5—C4—Fe159.64 (19)
C3—Fe1—C10—C9117.04 (17)C10—Fe1—C4—C541.3 (4)
C8—Fe1—C10—C938.33 (13)C2—Fe1—C4—C580.8 (2)
C4—Fe1—C10—C945.3 (4)C9—Fe1—C4—C575.9 (2)
C7—Fe1—C10—C982.13 (15)C3—Fe1—C4—C537.08 (18)
C6—Fe1—C10—C9119.4 (2)C8—Fe1—C4—C5118.34 (17)
C1—Fe1—C10—C9169.3 (3)C7—Fe1—C4—C5160.60 (16)
C6—C10—C9—C80.4 (3)C6—Fe1—C4—C5165.0 (3)
Fe1—C10—C9—C859.63 (16)C1—Fe1—C4—C5118.3 (3)
C6—C10—C9—C16175.9 (2)C10—Fe1—C4—C1159.7 (3)
Fe1—C10—C9—C16115.9 (2)C2—Fe1—C4—C137.6 (2)
C6—C10—C9—Fe160.04 (17)C5—Fe1—C4—C1118.3 (3)
C10—Fe1—C9—C8118.34 (19)C9—Fe1—C4—C1165.8 (2)
C2—Fe1—C9—C8168.5 (3)C3—Fe1—C4—C181.3 (2)
C5—Fe1—C9—C8118.57 (15)C8—Fe1—C4—C1123.3 (2)
C3—Fe1—C9—C8160.17 (16)C7—Fe1—C4—C181.1 (2)
C4—Fe1—C9—C877.80 (17)C6—Fe1—C4—C146.7 (4)
C7—Fe1—C9—C837.66 (14)C9—C10—C6—C70.4 (3)
C6—Fe1—C9—C881.07 (15)Fe1—C10—C6—C758.99 (17)
C1—Fe1—C9—C848.5 (4)C9—C10—C6—Fe159.35 (16)
C2—Fe1—C9—C1050.1 (3)C8—C7—C6—C100.2 (3)
C5—Fe1—C9—C10123.08 (15)Fe1—C7—C6—C1058.51 (17)
C3—Fe1—C9—C1081.49 (18)C8—C7—C6—Fe158.70 (17)
C8—Fe1—C9—C10118.34 (19)C2—Fe1—C6—C10116.9 (2)
C4—Fe1—C9—C10163.86 (15)C5—Fe1—C6—C1043.6 (4)
C7—Fe1—C9—C1080.68 (15)C9—Fe1—C6—C1038.14 (14)
C6—Fe1—C9—C1037.27 (14)C3—Fe1—C6—C1075.4 (2)
C1—Fe1—C9—C10166.9 (3)C8—Fe1—C6—C1082.44 (15)
C10—Fe1—C9—C16115.7 (2)C4—Fe1—C6—C10167.2 (3)
C2—Fe1—C9—C1665.6 (4)C7—Fe1—C6—C10119.7 (2)
C5—Fe1—C9—C167.4 (2)C1—Fe1—C6—C10159.0 (2)
C3—Fe1—C9—C1634.2 (2)C10—Fe1—C6—C7119.7 (2)
C8—Fe1—C9—C16125.9 (3)C2—Fe1—C6—C7123.4 (2)
C4—Fe1—C9—C1648.1 (2)C5—Fe1—C6—C7163.3 (3)
C7—Fe1—C9—C16163.6 (2)C9—Fe1—C6—C781.56 (16)
C6—Fe1—C9—C16153.0 (2)C3—Fe1—C6—C7164.90 (18)
C1—Fe1—C9—C1677.4 (4)C8—Fe1—C6—C737.26 (15)
N2—C15—C17—C161.7 (3)C4—Fe1—C6—C747.5 (4)
C14—C15—C17—C16179.2 (2)C1—Fe1—C6—C781.3 (2)
N2—C15—C17—C18177.4 (2)C10—Fe1—C2—C1161.20 (17)
C14—C15—C17—C181.6 (3)C5—Fe1—C2—C181.0 (2)
C18—C17—C16—C90.5 (4)C9—Fe1—C2—C1162.4 (2)
C15—C17—C16—C9179.6 (2)C3—Fe1—C2—C1118.7 (3)
C8—C9—C16—C178.6 (4)C8—Fe1—C2—C142.1 (5)
C10—C9—C16—C17177.1 (2)C4—Fe1—C2—C137.53 (18)
Fe1—C9—C16—C1798.6 (3)C7—Fe1—C2—C177.3 (2)
C14—C15—N2—C120.1 (4)C6—Fe1—C2—C1118.69 (19)
C17—C15—N2—C12179.2 (2)C10—Fe1—C2—C380.1 (2)
C10—C9—C8—C70.3 (3)C5—Fe1—C2—C337.71 (19)
C16—C9—C8—C7175.3 (2)C9—Fe1—C2—C343.7 (4)
Fe1—C9—C8—C759.58 (17)C8—Fe1—C2—C3160.8 (3)
C10—C9—C8—Fe159.29 (15)C4—Fe1—C2—C381.2 (2)
C16—C9—C8—Fe1115.7 (2)C7—Fe1—C2—C3164.06 (18)
C10—Fe1—C8—C780.51 (16)C6—Fe1—C2—C3122.6 (2)
C2—Fe1—C8—C746.3 (4)C1—Fe1—C2—C3118.7 (3)
C5—Fe1—C8—C7160.94 (16)C15—N2—C12—C110.6 (5)
C9—Fe1—C8—C7119.1 (2)C13—C11—C12—N20.6 (5)
C3—Fe1—C8—C7166.0 (3)C4—C5—C3—C20.2 (3)
C4—Fe1—C8—C7119.28 (16)Fe1—C5—C3—C259.7 (2)
C6—Fe1—C8—C736.99 (15)C4—C5—C3—Fe159.92 (18)
C1—Fe1—C8—C778.15 (19)C1—C2—C3—C50.4 (3)
C10—Fe1—C8—C938.57 (13)Fe1—C2—C3—C559.86 (19)
C2—Fe1—C8—C9165.4 (3)C1—C2—C3—Fe160.3 (2)
C5—Fe1—C8—C979.98 (17)C10—Fe1—C3—C5123.48 (17)
C3—Fe1—C8—C946.9 (3)C2—Fe1—C3—C5118.6 (3)
C4—Fe1—C8—C9121.64 (15)C9—Fe1—C3—C580.2 (2)
C7—Fe1—C8—C9119.1 (2)C8—Fe1—C3—C546.2 (4)
C6—Fe1—C8—C982.09 (15)C4—Fe1—C3—C537.06 (17)
C1—Fe1—C8—C9162.77 (15)C7—Fe1—C3—C5163.4 (3)
C9—C8—C7—C60.1 (3)C6—Fe1—C3—C5164.61 (16)
Fe1—C8—C7—C659.03 (18)C1—Fe1—C3—C580.8 (2)
C9—C8—C7—Fe159.10 (16)C10—Fe1—C3—C2117.9 (2)
C10—Fe1—C7—C637.37 (15)C5—Fe1—C3—C2118.6 (3)
C2—Fe1—C7—C676.1 (2)C9—Fe1—C3—C2161.2 (2)
C5—Fe1—C7—C6166.1 (3)C8—Fe1—C3—C2164.8 (3)
C9—Fe1—C7—C682.05 (16)C4—Fe1—C3—C281.6 (2)
C3—Fe1—C7—C642.2 (4)C7—Fe1—C3—C244.8 (5)
C8—Fe1—C7—C6120.1 (2)C6—Fe1—C3—C276.8 (2)
C4—Fe1—C7—C6160.39 (15)C1—Fe1—C3—C237.9 (2)
C1—Fe1—C7—C6117.96 (19)C3—C2—C1—C40.5 (3)
C10—Fe1—C7—C882.78 (16)Fe1—C2—C1—C459.6 (2)
C2—Fe1—C7—C8163.7 (2)C3—C2—C1—Fe160.1 (2)
C5—Fe1—C7—C846.0 (3)C5—C4—C1—C20.4 (3)
C9—Fe1—C7—C838.10 (15)Fe1—C4—C1—C259.2 (2)
C3—Fe1—C7—C8162.4 (4)C5—C4—C1—Fe159.61 (19)
C4—Fe1—C7—C879.47 (18)C10—Fe1—C1—C244.2 (4)
C6—Fe1—C7—C8120.1 (2)C5—Fe1—C1—C281.4 (2)
C1—Fe1—C7—C8121.90 (19)C9—Fe1—C1—C2158.1 (3)
N2—C15—C14—C130.4 (4)C3—Fe1—C1—C237.8 (2)
C17—C15—C14—C13178.6 (2)C8—Fe1—C1—C2165.02 (19)
C10—Fe1—C5—C375.2 (2)C4—Fe1—C1—C2119.2 (3)
C2—Fe1—C5—C337.9 (2)C7—Fe1—C1—C2122.7 (2)
C9—Fe1—C5—C3117.5 (2)C6—Fe1—C1—C280.1 (2)
C8—Fe1—C5—C3160.23 (19)C10—Fe1—C1—C4163.4 (3)
C4—Fe1—C5—C3119.9 (3)C2—Fe1—C1—C4119.2 (3)
C7—Fe1—C5—C3166.4 (3)C5—Fe1—C1—C437.87 (18)
C6—Fe1—C5—C342.2 (4)C9—Fe1—C1—C438.8 (5)
C1—Fe1—C5—C381.8 (2)C3—Fe1—C1—C481.4 (2)
C10—Fe1—C5—C4164.91 (16)C8—Fe1—C1—C475.8 (2)
C2—Fe1—C5—C482.0 (2)C7—Fe1—C1—C4118.11 (19)
C9—Fe1—C5—C4122.60 (17)C6—Fe1—C1—C4160.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N20.932.412.804 (3)105
C4—H4A···N1i0.982.623.538 (4)156
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H9N2)]
Mr314.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.105 (2), 10.716 (2), 12.675 (3)
β (°) 106.95 (3)
V3)1442.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.725, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
14799, 3311, 2564
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.07
No. of reflections3311
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···N20.932.412.804 (3)105.1
C4—H4A···N1i0.982.623.538 (4)155.6
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

References

First citationBoyd, P. D. W. & Paauwe, J. D. (2006). Acta Cryst. E62, m2153–m2155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, W., Mbafor, W., Roberts, S. M. & Whittall, J. (2006). J. Am. Chem. Soc. 128, 3922–3923.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiao, J., Long, G. J., Grandjean, F., Beatty, A. M. & Fehlner, T. P. (2003). J. Am. Chem. Soc. 125, 7522–7523.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMancheno, O. G., Arrayas, R. G. & Carretero, J. C. (2004). J. Am. Chem. Soc. 126, 456–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShao, L., Hu, Y., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, m1837–m1839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds