inorganic compounds
The iron phosphate NaBaFe2(PO4)3
aFaculté des Sciences de Monastir, 5019 Monastir, Tunisia
*Correspondence e-mail: mourad_hidouri@yahoo.fr
A new iron phosphate, sodium barium diiron tris(phosphate), NaBaFe2(PO4)3, has been synthesized by the method and shown to exhibit the well known langbeinite type structure. The Na, Ba and Fe atoms all lie on threefold axes, while the P and O atoms occupy general positions, one of the O atoms being disordered over two positions, with site occupancy factors of ca 0.7 and 0.3. The [Fe2(PO4)3]∞ framework consists of FeO6 octahedra sharing all their corners with the PO4 tetrahedra. The Na+ and Ba2+ cations are almost equally distributed over two distinct cavities, in which they occupy slightly different positions.
Related literature
For related literature, see: Baur (1974); Moffat (1978); Padhi et al. (1997); Shannon (1976). For the structure of langbeinite, see Zemann & Zemann (1957); Battle et al. (1986, 1988).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808023040/br2076sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023040/br2076Isup2.hkl
Single crystals of the title compund were grown in a
of sodium dimolybdate Na2Mo2O7 with an atomic ratio P:Mo = 6:1. A starting mixture of 1.071 g of Na2CO3, 1.993 g of BaCO3, 8.162 g of Fe(NO3)3.9H2O, 4.002 g of (NH4)2HPO4 and 1.454 g of MoO3 was dissolved in nitric acid and the obtained solution was evaporated to dryness. The dry residue was transferred into a platinum crucible and then heated up 600°C to decompose H2O and NH3. In a second step, the sample was melted for 1 h at 900°C and then cooled down to room temperature with a 10° h-1 rate. The final product, obtained after washing with warm water to dissolve the is essentially composed of pink and prismatic shaped crystals. Their qualitative elemental analysis using electron microprobe analysis indicated the presence of Na, Ba, Fe and P and no impurity elements have been detected.The Ba and Fe atoms were located by
and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined anisotropically.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A projection of the structure along the [111] direction. | |
Fig. 2. The environments of the Na and Ba sites showing the anisotropic atomic displacements at the 50% level. |
NaBaFe2(PO4)3 | Dx = 3.935 Mg m−3 |
Mr = 556.94 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 25 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 9.0–13.0° |
a = 9.796 (1) Å | µ = 7.82 mm−1 |
V = 940.1 (3) Å3 | T = 293 K |
Z = 4 | Prism, pink |
F(000) = 1040 | 0.1 × 0.1 × 0.1 mm |
Enraf–Nonius CAD-4 diffractometer | 644 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.082 |
Graphite monochromator | θmax = 29.9°, θmin = 2.9° |
ω/2θ scans | h = −1→13 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→13 |
Tmin = 0.35, Tmax = 0.46 | l = −1→13 |
2114 measured reflections | 2 standard reflections every 120 min |
657 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + 5.7579P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.025 | (Δ/σ)max = 0.002 |
wR(F2) = 0.059 | Δρmax = 0.57 e Å−3 |
S = 0.92 | Δρmin = −0.49 e Å−3 |
657 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
70 parameters | Extinction coefficient: 0.0145 (15) |
4 restraints | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (3) |
NaBaFe2(PO4)3 | Z = 4 |
Mr = 556.94 | Mo Kα radiation |
Cubic, P213 | µ = 7.82 mm−1 |
a = 9.796 (1) Å | T = 293 K |
V = 940.1 (3) Å3 | 0.1 × 0.1 × 0.1 mm |
Enraf–Nonius CAD-4 diffractometer | 644 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.082 |
Tmin = 0.35, Tmax = 0.46 | 2 standard reflections every 120 min |
2114 measured reflections | intensity decay: 1% |
657 independent reflections |
R[F2 > 2σ(F2)] = 0.025 | 4 restraints |
wR(F2) = 0.059 | Δρmax = 0.57 e Å−3 |
S = 0.92 | Δρmin = −0.49 e Å−3 |
657 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
70 parameters | Absolute structure parameter: −0.03 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na1 | 0.9427 (12) | 0.9427 (12) | 0.9427 (12) | 0.0144 (3) | 0.4738 (16) |
Ba1 | 0.92953 (9) | 0.92953 (9) | 0.92953 (9) | 0.0144 (3) | 0.5262 (16) |
Na2 | 0.6862 (8) | 0.6862 (8) | 0.6862 (8) | 0.0232 (4) | 0.5262 (16) |
Ba2 | 0.70555 (8) | 0.70555 (8) | 0.70555 (8) | 0.0232 (4) | 0.4738 (16) |
Fe1 | 0.35313 (6) | 0.85313 (6) | 0.64687 (6) | 0.0104 (2) | |
Fe2 | 0.91362 (6) | 0.08638 (6) | 0.58638 (6) | 0.0101 (2) | |
P | 0.03742 (10) | 0.77099 (11) | 0.62578 (10) | 0.0068 (2) | |
O1 | 0.9926 (5) | 0.9134 (4) | 0.6562 (7) | 0.0461 (14) | |
O2 | 0.9463 (5) | 0.6999 (6) | 0.5243 (5) | 0.0440 (13) | |
O3 | 0.1846 (4) | 0.7653 (6) | 0.5752 (5) | 0.0368 (12) | |
O4A | 0.0112 (7) | 0.6985 (10) | 0.7629 (8) | 0.0389 (18) | 0.701 (4) |
O4B | 0.0527 (17) | 0.672 (2) | 0.738 (2) | 0.0389 (18) | 0.299 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0144 (3) | 0.0144 (3) | 0.0144 (3) | −0.0019 (3) | −0.0019 (3) | −0.0019 (3) |
Ba1 | 0.0144 (3) | 0.0144 (3) | 0.0144 (3) | −0.0019 (3) | −0.0019 (3) | −0.0019 (3) |
Na2 | 0.0232 (4) | 0.0232 (4) | 0.0232 (4) | 0.0016 (3) | 0.0016 (3) | 0.0016 (3) |
Ba2 | 0.0232 (4) | 0.0232 (4) | 0.0232 (4) | 0.0016 (3) | 0.0016 (3) | 0.0016 (3) |
Fe1 | 0.0104 (2) | 0.0104 (2) | 0.0104 (2) | 0.0001 (2) | −0.0001 (2) | −0.0001 (2) |
Fe2 | 0.0101 (2) | 0.0101 (2) | 0.0101 (2) | 0.0024 (2) | 0.0024 (2) | −0.0024 (2) |
P | 0.0066 (4) | 0.0073 (4) | 0.0064 (4) | −0.0005 (3) | −0.0028 (3) | 0.0010 (3) |
O1 | 0.045 (3) | 0.0170 (19) | 0.076 (4) | 0.0191 (19) | −0.015 (3) | −0.015 (2) |
O2 | 0.029 (2) | 0.061 (3) | 0.042 (3) | 0.003 (2) | −0.025 (2) | −0.031 (2) |
O3 | 0.0120 (16) | 0.063 (3) | 0.035 (2) | −0.0091 (18) | 0.0085 (16) | −0.023 (2) |
O4A | 0.020 (4) | 0.066 (5) | 0.031 (3) | 0.020 (3) | 0.015 (3) | 0.040 (3) |
O4B | 0.020 (4) | 0.066 (5) | 0.031 (3) | 0.020 (3) | 0.015 (3) | 0.040 (3) |
Na1—O1i | 2.864 (12) | Ba2—O3xiii | 2.772 (5) |
Na1—O1 | 2.864 (12) | Ba2—O3xiv | 2.772 (5) |
Na1—O1ii | 2.864 (12) | Ba2—O2ii | 2.952 (5) |
Na1—O4Biii | 2.86 (3) | Ba2—O2 | 2.952 (5) |
Na1—O4Biv | 2.86 (3) | Ba2—O2i | 2.952 (5) |
Na1—O4Bv | 2.86 (3) | Ba2—O4Avi | 3.047 (7) |
Na1—O4Avi | 3.045 (17) | Ba2—O4Avii | 3.047 (7) |
Na1—O4Avii | 3.045 (17) | Ba2—O4Aviii | 3.047 (7) |
Na1—O4Aviii | 3.045 (17) | Fe1—O2ii | 1.979 (4) |
Na1—O2ix | 2.763 (17) | Fe1—O2xv | 1.979 (4) |
Na1—O2x | 2.763 (17) | Fe1—O2xvi | 1.979 (4) |
Na1—O2xi | 2.763 (17) | Fe1—O3xiii | 1.990 (4) |
Ba1—O1i | 2.753 (7) | Fe1—O3 | 1.990 (4) |
Ba1—O1 | 2.753 (7) | Fe1—O3xvii | 1.990 (4) |
Ba1—O1ii | 2.753 (7) | Fe1—Ba1xviii | 3.6878 (19) |
Ba1—O4Biii | 2.89 (3) | Fe1—Ba2iv | 3.7867 (6) |
Ba1—O4Biv | 2.89 (3) | Fe1—Ba2xv | 3.7867 (6) |
Ba1—O4Bv | 2.89 (3) | Fe2—O4Bxix | 1.946 (18) |
Ba1—O4Avi | 2.902 (10) | Fe2—O4Bii | 1.946 (18) |
Ba1—O4Avii | 2.902 (10) | Fe2—O4Bxii | 1.946 (18) |
Ba1—O4Aviii | 2.902 (10) | Fe2—O1xx | 1.984 (5) |
Ba1—O2ix | 2.950 (6) | Fe2—O1xxi | 1.984 (5) |
Ba1—O2x | 2.950 (6) | Fe2—O1xxii | 1.984 (5) |
Ba1—O2xi | 2.950 (6) | Fe2—O4Axix | 1.982 (7) |
Na2—O3xii | 2.604 (8) | Fe2—O4Aii | 1.982 (7) |
Na2—O3xiii | 2.604 (8) | Fe2—O4Axii | 1.982 (7) |
Na2—O3xiv | 2.604 (8) | P—O4B | 1.470 (18) |
Na2—O2 | 3.004 (6) | P—O1xxiii | 1.493 (4) |
Na2—O2i | 3.004 (6) | P—O2xxiii | 1.506 (4) |
Na2—O2ii | 3.004 (6) | P—O3 | 1.526 (4) |
Ba2—O3xii | 2.772 (5) | P—O4A | 1.541 (7) |
O1i—Na1—O1 | 94.9 (5) | O2ix—Ba1—O2xi | 55.17 (13) |
O1i—Na1—O1ii | 94.9 (5) | O2x—Ba1—O2xi | 55.17 (13) |
O1—Na1—O1ii | 94.9 (5) | O3xii—Na2—O3xiii | 100.1 (3) |
O1i—Na1—O4Biii | 58.0 (4) | O3xii—Na2—O3xiv | 100.1 (3) |
O1—Na1—O4Biii | 79.6 (4) | O3xiii—Na2—O3xiv | 100.1 (3) |
O1ii—Na1—O4Biii | 151.3 (7) | O3xii—Na2—O2 | 83.46 (16) |
O1i—Na1—O4Biv | 151.3 (7) | O3xiii—Na2—O2 | 158.5 (4) |
O1—Na1—O4Biv | 58.0 (4) | O3xiv—Na2—O2 | 58.53 (12) |
O1ii—Na1—O4Biv | 79.6 (4) | O3xii—Na2—O2i | 58.53 (12) |
O4Biii—Na1—O4Biv | 118.89 (19) | O3xiii—Na2—O2i | 83.46 (16) |
O1i—Na1—O4Bv | 79.6 (4) | O3xiv—Na2—O2i | 158.5 (4) |
O1—Na1—O4Bv | 151.3 (7) | O2—Na2—O2i | 115.68 (18) |
O1ii—Na1—O4Bv | 58.0 (4) | O3xii—Na2—O2ii | 158.5 (4) |
O4Biii—Na1—O4Bv | 118.89 (19) | O3xiii—Na2—O2ii | 58.53 (12) |
O4Biv—Na1—O4Bv | 118.89 (19) | O3xiv—Na2—O2ii | 83.46 (16) |
O1i—Na1—O4Avi | 46.9 (2) | O2—Na2—O2ii | 115.68 (18) |
O1—Na1—O4Avi | 107.0 (6) | O2i—Na2—O2ii | 115.68 (18) |
O1ii—Na1—O4Avi | 49.5 (3) | O3xii—Ba2—O3xiii | 92.09 (15) |
O1i—Na1—O4Avii | 49.5 (3) | O3xii—Ba2—O3xiv | 92.09 (15) |
O1—Na1—O4Avii | 46.9 (2) | O3xiii—Ba2—O3xiv | 92.09 (15) |
O1ii—Na1—O4Avii | 107.0 (6) | O3xii—Ba2—O2ii | 148.54 (14) |
O1i—Na1—O4Aviii | 107.0 (6) | O3xiii—Ba2—O2ii | 57.63 (12) |
O1—Na1—O4Aviii | 49.5 (3) | O3xiv—Ba2—O2ii | 81.64 (14) |
O1ii—Na1—O4Aviii | 46.9 (2) | O3xii—Ba2—O2 | 81.64 (14) |
O4Avi—Na1—O4Aviii | 81.1 (5) | O3xiii—Ba2—O2 | 148.54 (14) |
O4Avii—Na1—O4Aviii | 81.1 (5) | O3xiv—Ba2—O2 | 57.63 (12) |
O1i—Na1—O2ix | 97.97 (19) | O2ii—Ba2—O2 | 118.95 (3) |
O1—Na1—O2ix | 104.0 (2) | O3xii—Ba2—O2i | 57.63 (12) |
O1ii—Na1—O2ix | 156.0 (6) | O3xiii—Ba2—O2i | 81.64 (14) |
O4Biv—Na1—O2ix | 97.9 (6) | O3xiv—Ba2—O2i | 148.54 (14) |
O4Bv—Na1—O2ix | 104.6 (6) | O2ii—Ba2—O2i | 118.95 (3) |
O4Avi—Na1—O2ix | 134.2 (2) | O2—Ba2—O2i | 118.95 (3) |
O4Avii—Na1—O2ix | 96.81 (16) | O3xii—Ba2—O4Avi | 104.95 (16) |
O4Aviii—Na1—O2ix | 144.2 (3) | O3xiii—Ba2—O4Avi | 83.7 (2) |
O1i—Na1—O2x | 156.0 (6) | O3xiv—Ba2—O4Avi | 162.54 (16) |
O1—Na1—O2x | 97.97 (19) | O2ii—Ba2—O4Avi | 81.80 (17) |
O1ii—Na1—O2x | 104.0 (2) | O2—Ba2—O4Avi | 127.8 (2) |
O4Biii—Na1—O2x | 104.6 (6) | O2i—Ba2—O4Avi | 47.59 (16) |
O4Biv—Na1—O2x | 49.4 (4) | O3xii—Ba2—O4Avii | 83.7 (2) |
O4Bv—Na1—O2x | 97.9 (6) | O3xiii—Ba2—O4Avii | 162.54 (16) |
O4Avi—Na1—O2x | 144.2 (3) | O3xiv—Ba2—O4Avii | 104.95 (16) |
O4Avii—Na1—O2x | 134.2 (2) | O2ii—Ba2—O4Avii | 127.8 (2) |
O4Aviii—Na1—O2x | 96.81 (16) | O2—Ba2—O4Avii | 47.59 (16) |
O2ix—Na1—O2x | 59.2 (4) | O2i—Ba2—O4Avii | 81.80 (17) |
O1i—Na1—O2xi | 104.0 (2) | O4Avi—Ba2—O4Avii | 81.1 (3) |
O1—Na1—O2xi | 156.0 (6) | O3xii—Ba2—O4Aviii | 162.54 (17) |
O1ii—Na1—O2xi | 97.97 (19) | O3xiii—Ba2—O4Aviii | 104.95 (16) |
O4Biii—Na1—O2xi | 97.9 (6) | O3xiv—Ba2—O4Aviii | 83.7 (2) |
O4Biv—Na1—O2xi | 104.6 (6) | O2ii—Ba2—O4Aviii | 47.59 (16) |
O4Avi—Na1—O2xi | 96.81 (16) | O2—Ba2—O4Aviii | 81.80 (17) |
O4Avii—Na1—O2xi | 144.2 (3) | O2i—Ba2—O4Aviii | 127.8 (2) |
O4Aviii—Na1—O2xi | 134.2 (2) | O4Avi—Ba2—O4Aviii | 81.1 (3) |
O2ix—Na1—O2xi | 59.2 (4) | O4Avii—Ba2—O4Aviii | 81.1 (3) |
O2x—Na1—O2xi | 59.2 (4) | O2ii—Fe1—O2xv | 87.3 (2) |
O1i—Ba1—O1 | 100.10 (14) | O2ii—Fe1—O2xvi | 87.3 (2) |
O1i—Ba1—O1ii | 100.10 (14) | O2xv—Fe1—O2xvi | 87.3 (2) |
O1—Ba1—O1ii | 100.10 (14) | O2ii—Fe1—O3xiii | 88.26 (18) |
O1i—Ba1—O4Biii | 58.8 (4) | O2xv—Fe1—O3xiii | 89.2 (2) |
O1—Ba1—O4Biii | 80.9 (4) | O2xvi—Fe1—O3xiii | 174.5 (2) |
O1ii—Ba1—O4Biii | 158.5 (4) | O2ii—Fe1—O3 | 174.5 (2) |
O1i—Ba1—O4Biv | 158.5 (4) | O2xv—Fe1—O3 | 88.26 (18) |
O1—Ba1—O4Biv | 58.8 (4) | O2xvi—Fe1—O3 | 89.2 (2) |
O1ii—Ba1—O4Biv | 80.9 (4) | O3xiii—Fe1—O3 | 95.0 (2) |
O4Biii—Ba1—O4Biv | 116.8 (2) | O2ii—Fe1—O3xvii | 89.2 (2) |
O1i—Ba1—O4Bv | 80.9 (4) | O2xv—Fe1—O3xvii | 174.5 (2) |
O1—Ba1—O4Bv | 158.5 (4) | O2xvi—Fe1—O3xvii | 88.26 (18) |
O1ii—Ba1—O4Bv | 58.8 (4) | O3xiii—Fe1—O3xvii | 95.0 (2) |
O4Biii—Ba1—O4Bv | 116.8 (2) | O3—Fe1—O3xvii | 95.0 (2) |
O4Biv—Ba1—O4Bv | 116.8 (2) | O4Bxix—Fe2—O4Bii | 80.8 (9) |
O1i—Ba1—O4Avi | 49.19 (16) | O4Bxix—Fe2—O4Bxii | 80.8 (9) |
O1—Ba1—O4Avi | 114.25 (19) | O4Bii—Fe2—O4Bxii | 80.8 (9) |
O1ii—Ba1—O4Avi | 51.94 (17) | O4Bxix—Fe2—O1xx | 169.5 (6) |
O1i—Ba1—O4Avii | 51.94 (17) | O4Bii—Fe2—O1xx | 89.8 (8) |
O1—Ba1—O4Avii | 49.19 (16) | O4Bxii—Fe2—O1xx | 93.0 (5) |
O1ii—Ba1—O4Avii | 114.25 (19) | O4Bxix—Fe2—O1xxi | 93.0 (5) |
O1i—Ba1—O4Aviii | 114.25 (19) | O4Bii—Fe2—O1xxi | 169.5 (6) |
O1—Ba1—O4Aviii | 51.94 (17) | O4Bxii—Fe2—O1xxi | 89.8 (8) |
O1ii—Ba1—O4Aviii | 49.19 (16) | O1xx—Fe2—O1xxi | 95.5 (3) |
O4Avi—Ba1—O4Aviii | 86.1 (2) | O4Bxix—Fe2—O1xxii | 89.8 (8) |
O4Avii—Ba1—O4Aviii | 86.1 (2) | O4Bii—Fe2—O1xxii | 93.0 (5) |
O1i—Ba1—O2ix | 96.20 (14) | O4Bxii—Fe2—O1xxii | 169.5 (6) |
O1—Ba1—O2ix | 102.04 (15) | O1xx—Fe2—O1xxii | 95.5 (3) |
O1ii—Ba1—O2ix | 149.64 (14) | O1xxi—Fe2—O1xxii | 95.5 (3) |
O4Biii—Ba1—O2ix | 47.5 (4) | O1xx—Fe2—O4Axix | 168.6 (3) |
O4Biv—Ba1—O2ix | 93.1 (4) | O1xxi—Fe2—O4Axix | 77.4 (3) |
O4Bv—Ba1—O2ix | 99.2 (4) | O1xxii—Fe2—O4Axix | 94.1 (3) |
O4Avi—Ba1—O2ix | 132.27 (18) | O4Bxix—Fe2—O4Aii | 78.2 (6) |
O4Avii—Ba1—O2ix | 95.97 (17) | O4Bii—Fe2—O4Aii | 15.9 (5) |
O4Aviii—Ba1—O2ix | 141.66 (18) | O4Bxii—Fe2—O4Aii | 95.9 (8) |
O1i—Ba1—O2x | 149.64 (14) | O1xx—Fe2—O4Aii | 94.1 (3) |
O1—Ba1—O2x | 96.20 (14) | O1xxi—Fe2—O4Aii | 168.6 (3) |
O1ii—Ba1—O2x | 102.04 (15) | O1xxii—Fe2—O4Aii | 77.4 (3) |
O4Biii—Ba1—O2x | 99.2 (4) | O4Axix—Fe2—O4Aii | 94.0 (3) |
O4Biv—Ba1—O2x | 47.5 (4) | O1xx—Fe2—O4Axii | 77.4 (3) |
O4Bv—Ba1—O2x | 93.1 (4) | O1xxi—Fe2—O4Axii | 94.1 (3) |
O4Avi—Ba1—O2x | 141.66 (18) | O1xxii—Fe2—O4Axii | 168.6 (3) |
O4Avii—Ba1—O2x | 132.27 (18) | O4Axix—Fe2—O4Axii | 94.0 (3) |
O4Aviii—Ba1—O2x | 95.97 (17) | O4Aii—Fe2—O4Axii | 94.0 (3) |
O2ix—Ba1—O2x | 55.17 (13) | O4B—P—O1xxiii | 119.9 (10) |
O1i—Ba1—O2xi | 102.04 (15) | O4B—P—O2xxiii | 104.3 (11) |
O1—Ba1—O2xi | 149.64 (14) | O1xxiii—P—O2xxiii | 112.9 (3) |
O1ii—Ba1—O2xi | 96.20 (14) | O4B—P—O3 | 97.0 (6) |
O4Biii—Ba1—O2xi | 93.1 (4) | O1xxiii—P—O3 | 112.2 (3) |
O4Biv—Ba1—O2xi | 99.2 (4) | O2xxiii—P—O3 | 109.2 (3) |
O4Bv—Ba1—O2xi | 47.5 (4) | O4B—P—O4A | 20.6 (6) |
O4Avi—Ba1—O2xi | 95.97 (16) | O1xxiii—P—O4A | 102.0 (4) |
O4Avii—Ba1—O2xi | 141.66 (18) | O2xxiii—P—O4A | 105.3 (4) |
O4Aviii—Ba1—O2xi | 132.27 (18) | O3—P—O4A | 115.1 (3) |
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y+1/2, −z+3/2, −x+1; (iv) −x+1, y+1/2, −z+3/2; (v) −z+3/2, −x+1, y+1/2; (vi) y, z, x+1; (vii) x+1, y, z; (viii) z, x+1, y; (ix) y+1/2, −z+3/2, −x+2; (x) −x+2, y+1/2, −z+3/2; (xi) −z+3/2, −x+2, y+1/2; (xii) −y+3/2, −z+1, x+1/2; (xiii) −z+1, x+1/2, −y+3/2; (xiv) x+1/2, −y+3/2, −z+1; (xv) x−1/2, −y+3/2, −z+1; (xvi) −y+1, z+1/2, −x+3/2; (xvii) y−1/2, −z+3/2, −x+1; (xviii) −x+3/2, −y+2, z−1/2; (xix) −x+1, y−1/2, −z+3/2; (xx) −z+3/2, −x+1, y−1/2; (xxi) −y+2, z−1/2, −x+3/2; (xxii) x, y−1, z; (xxiii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | NaBaFe2(PO4)3 |
Mr | 556.94 |
Crystal system, space group | Cubic, P213 |
Temperature (K) | 293 |
a (Å) | 9.796 (1) |
V (Å3) | 940.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.82 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.35, 0.46 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2114, 657, 644 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.702 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.059, 0.92 |
No. of reflections | 657 |
No. of parameters | 70 |
No. of restraints | 4 |
Δρmax, Δρmin (e Å−3) | 0.57, −0.49 |
Absolute structure | Flack (1983), with how many Friedel pairs? |
Absolute structure parameter | −0.03 (3) |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).
O4Bi—Fe2—O1ii | 89.8 (8) | O3—P—O4A | 115.1 (3) |
Symmetry codes: (i) z, x, y; (ii) −z+3/2, −x+1, y−1/2. |
References
Battle, P. D., Cheetham, A. K., Harrison, W. T. A. & Long, G. J. (1986). J. Solid State Chem. 62, 16–25. CrossRef CAS Web of Science Google Scholar
Battle, P. D., Gibb, T. C., Nixon, S. & Harrison, W. T. A. (1988). J. Solid State Chem. 75, 21–29. CrossRef CAS Web of Science Google Scholar
Baur, W. H. (1974). Acta Cryst. B30, 1195–1215. CrossRef CAS IUCr Journals Web of Science Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Moffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199–258. CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188–1194. CrossRef CAS Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413. CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Iron phosphates are of increasing interst because of their potential applications in various fields ranging from catalysis (Moffat, 1978) to ionic conductivity (Padhi et al., 1997). Moreover, these materials are very attractive in terms of basic reasearch because they exhibit a rich structural chemistry owing to the possible (+2/+3) mixed valence of iron and its tendency to exhibit various coordination polyhedra.
The title cmpound, sodium barium diiron phosphate NaBaFe2(PO4)3 was isolated during a systematic investigation of the Na2O–MO–Fe2O3–P2O5 systems where M is a divalent cation. Its structure (Fig. 1) exhibits a three-dimensional [Fe2(PO4)3]∞ framework built up from corner-sharing FeO6 octahedra and PO4 tetrahedra. Each octahedron is linked to six adjacent tetrahedra and reciprocally each tetrahedron is connected to four neighboring octahedra. This framework delimits two sorts of large cavities, statistically occupied by the Na+ and Ba2+ cations.
The two symmetry distinct FeO6 octahedra contained in this structure are somewhat distorted as indicated by the Fe—O distances ranging from 1.963 (5) to 1.991 (4) Å. The average <Fe—O> distances of 1.986 Å for Fe(1) and 1.973 Å for Fe(2) are slightly lower than the value 2.03 Å predicted by Shannon for octahedral Fe3+ ions (Shannon, 1976).
The PO4 tetrahedron is strongly distorted with P—O distances scattering from 1.47 (2) to 1.547 (7) Å. Corresponding average value of 1.511 Å agrees with those frequently observed in anhydrous monophosphates (Baur, 1974).
The Na+ and Ba2+ cations are statistically distributed over two distinct cavities in which they occupy slightly different positions and have partial occupancies of 0.47, 0.53, 0.53 and 0.47 for Na(1), Ba(1), Na(2) and Ba(2), respectively. The environments of these cations (Fig. 2) were determined assuming all cation-oxygen distances are shorter than the shortest to next cationic site. Each of the Na(1), Ba(1) and Ba(2) environments consists of nine O atoms with cation-oxygen distances in the ranges 2.76 (2)–3.04 (2) Å, 2.753 (7)–2.950 (6) Å and 2.722 (5)–3.047 (7) Å for Na(1), Ba(1) and Ba(2), respectively. The Na(2) environment consists of six O atoms with Na—O distances varying from 2.604 (8) and 3.004 (6) Å.
The as-described structure is closely related to the langbeinite-like phosphates KBaM2(PO4)3 (M = Fe, Cr) (Battle et al., 1986, 1988). However, it differs by the fact that the atom O4, which occupies a single site in the potassium phosphates, is, in the title compound, statistically occupying two distinct positions, O4A and O4B which exhibit partial occupancies of 0.7 and 0.3, respectively. These different values can be explained by the fact that the O4A site is occupied if it is bonded to Na(1), Ba(1) or Ba(2) whereas the O4B site is occupied if it is bonded to Na(1) or Ba(1).