inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The iron phosphate NaBaFe2(PO4)3

aFaculté des Sciences de Monastir, 5019 Monastir, Tunisia
*Correspondence e-mail: mourad_hidouri@yahoo.fr

(Received 27 May 2008; accepted 22 July 2008; online 31 July 2008)

A new iron phosphate, sodium barium diiron tris­(phosphate), NaBaFe2(PO4)3, has been synthesized by the flux method and shown to exhibit the well known langbeinite type structure. The Na, Ba and Fe atoms all lie on threefold axes, while the P and O atoms occupy general positions, one of the O atoms being disordered over two positions, with site occupancy factors of ca 0.7 and 0.3. The [Fe2(PO4)3] framework consists of FeO6 octa­hedra sharing all their corners with the PO4 tetra­hedra. The Na+ and Ba2+ cations are almost equally distributed over two distinct cavities, in which they occupy slightly different positions.

Related literature

For related literature, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]); Moffat (1978[Moffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199-258.]); Padhi et al. (1997[Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188-1194.]); Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For the structure of langbeinite, see Zemann & Zemann (1957[Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.]); Battle et al. (1986[Battle, P. D., Cheetham, A. K., Harrison, W. T. A. & Long, G. J. (1986). J. Solid State Chem. 62, 16-25.], 1988[Battle, P. D., Gibb, T. C., Nixon, S. & Harrison, W. T. A. (1988). J. Solid State Chem. 75, 21-29.]).

Experimental

Crystal data
  • NaBaFe2(PO4)3

  • Mr = 556.94

  • Cubic, P 21 3

  • a = 9.796 (1) Å

  • V = 940.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.82 mm−1

  • T = 293 (2) K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.35, Tmax = 0.46

  • 2114 measured reflections

  • 657 independent reflections

  • 644 reflections with I > 2σ(I)

  • Rint = 0.082

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 0.92

  • 657 reflections

  • 70 parameters

  • 4 restraints

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 123 Friedel pairs

  • Flack parameter: −0.03 (3)

Table 1
Selected bond angles (°)

O4Bi—Fe2—O1ii 89.8 (8)
O3—P—O4A 115.1 (3)
Symmetry codes: (i) z, x, y; (ii) [-z+{\script{3\over 2}}, -x+1, y-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Iron phosphates are of increasing interst because of their potential applications in various fields ranging from catalysis (Moffat, 1978) to ionic conductivity (Padhi et al., 1997). Moreover, these materials are very attractive in terms of basic reasearch because they exhibit a rich structural chemistry owing to the possible (+2/+3) mixed valence of iron and its tendency to exhibit various coordination polyhedra.

The title cmpound, sodium barium diiron phosphate NaBaFe2(PO4)3 was isolated during a systematic investigation of the Na2O–MO–Fe2O3–P2O5 systems where M is a divalent cation. Its structure (Fig. 1) exhibits a three-dimensional [Fe2(PO4)3] framework built up from corner-sharing FeO6 octahedra and PO4 tetrahedra. Each octahedron is linked to six adjacent tetrahedra and reciprocally each tetrahedron is connected to four neighboring octahedra. This framework delimits two sorts of large cavities, statistically occupied by the Na+ and Ba2+ cations.

The two symmetry distinct FeO6 octahedra contained in this structure are somewhat distorted as indicated by the Fe—O distances ranging from 1.963 (5) to 1.991 (4) Å. The average <Fe—O> distances of 1.986 Å for Fe(1) and 1.973 Å for Fe(2) are slightly lower than the value 2.03 Å predicted by Shannon for octahedral Fe3+ ions (Shannon, 1976).

The PO4 tetrahedron is strongly distorted with P—O distances scattering from 1.47 (2) to 1.547 (7) Å. Corresponding average value of 1.511 Å agrees with those frequently observed in anhydrous monophosphates (Baur, 1974).

The Na+ and Ba2+ cations are statistically distributed over two distinct cavities in which they occupy slightly different positions and have partial occupancies of 0.47, 0.53, 0.53 and 0.47 for Na(1), Ba(1), Na(2) and Ba(2), respectively. The environments of these cations (Fig. 2) were determined assuming all cation-oxygen distances are shorter than the shortest to next cationic site. Each of the Na(1), Ba(1) and Ba(2) environments consists of nine O atoms with cation-oxygen distances in the ranges 2.76 (2)–3.04 (2) Å, 2.753 (7)–2.950 (6) Å and 2.722 (5)–3.047 (7) Å for Na(1), Ba(1) and Ba(2), respectively. The Na(2) environment consists of six O atoms with Na—O distances varying from 2.604 (8) and 3.004 (6) Å.

The as-described structure is closely related to the langbeinite-like phosphates KBaM2(PO4)3 (M = Fe, Cr) (Battle et al., 1986, 1988). However, it differs by the fact that the atom O4, which occupies a single site in the potassium phosphates, is, in the title compound, statistically occupying two distinct positions, O4A and O4B which exhibit partial occupancies of 0.7 and 0.3, respectively. These different values can be explained by the fact that the O4A site is occupied if it is bonded to Na(1), Ba(1) or Ba(2) whereas the O4B site is occupied if it is bonded to Na(1) or Ba(1).

Related literature top

For related literature, see: Baur (1974); Moffat (1978); Padhi et al. (1997); Shannon (1976). For the structure of langbeinite, see Zemann & Zemann (1957); Battle et al. (1986, 1988).

Experimental top

Single crystals of the title compund were grown in a flux of sodium dimolybdate Na2Mo2O7 with an atomic ratio P:Mo = 6:1. A starting mixture of 1.071 g of Na2CO3, 1.993 g of BaCO3, 8.162 g of Fe(NO3)3.9H2O, 4.002 g of (NH4)2HPO4 and 1.454 g of MoO3 was dissolved in nitric acid and the obtained solution was evaporated to dryness. The dry residue was transferred into a platinum crucible and then heated up 600°C to decompose H2O and NH3. In a second step, the sample was melted for 1 h at 900°C and then cooled down to room temperature with a 10° h-1 rate. The final product, obtained after washing with warm water to dissolve the flux is essentially composed of pink and prismatic shaped crystals. Their qualitative elemental analysis using electron microprobe analysis indicated the presence of Na, Ba, Fe and P and no impurity elements have been detected.

Refinement top

The Ba and Fe atoms were located by direct methods and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined anisotropically.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A projection of the structure along the [111] direction.
[Figure 2] Fig. 2. The environments of the Na and Ba sites showing the anisotropic atomic displacements at the 50% level.
sodium barium diiron tris(phosphate) top
Crystal data top
NaBaFe2(PO4)3Dx = 3.935 Mg m3
Mr = 556.94Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 25 reflections
Hall symbol: P 2ac 2ab 3θ = 9.0–13.0°
a = 9.796 (1) ŵ = 7.82 mm1
V = 940.1 (3) Å3T = 293 K
Z = 4Prism, pink
F(000) = 10400.1 × 0.1 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 29.9°, θmin = 2.9°
ω/2θ scansh = 113
Absorption correction: ψ scan
(North et al., 1968)
k = 113
Tmin = 0.35, Tmax = 0.46l = 113
2114 measured reflections2 standard reflections every 120 min
657 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + 5.7579P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.002
wR(F2) = 0.059Δρmax = 0.57 e Å3
S = 0.92Δρmin = 0.49 e Å3
657 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
70 parametersExtinction coefficient: 0.0145 (15)
4 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
NaBaFe2(PO4)3Z = 4
Mr = 556.94Mo Kα radiation
Cubic, P213µ = 7.82 mm1
a = 9.796 (1) ÅT = 293 K
V = 940.1 (3) Å30.1 × 0.1 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
644 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.082
Tmin = 0.35, Tmax = 0.462 standard reflections every 120 min
2114 measured reflections intensity decay: 1%
657 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0254 restraints
wR(F2) = 0.059Δρmax = 0.57 e Å3
S = 0.92Δρmin = 0.49 e Å3
657 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
70 parametersAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.9427 (12)0.9427 (12)0.9427 (12)0.0144 (3)0.4738 (16)
Ba10.92953 (9)0.92953 (9)0.92953 (9)0.0144 (3)0.5262 (16)
Na20.6862 (8)0.6862 (8)0.6862 (8)0.0232 (4)0.5262 (16)
Ba20.70555 (8)0.70555 (8)0.70555 (8)0.0232 (4)0.4738 (16)
Fe10.35313 (6)0.85313 (6)0.64687 (6)0.0104 (2)
Fe20.91362 (6)0.08638 (6)0.58638 (6)0.0101 (2)
P0.03742 (10)0.77099 (11)0.62578 (10)0.0068 (2)
O10.9926 (5)0.9134 (4)0.6562 (7)0.0461 (14)
O20.9463 (5)0.6999 (6)0.5243 (5)0.0440 (13)
O30.1846 (4)0.7653 (6)0.5752 (5)0.0368 (12)
O4A0.0112 (7)0.6985 (10)0.7629 (8)0.0389 (18)0.701 (4)
O4B0.0527 (17)0.672 (2)0.738 (2)0.0389 (18)0.299 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0144 (3)0.0144 (3)0.0144 (3)0.0019 (3)0.0019 (3)0.0019 (3)
Ba10.0144 (3)0.0144 (3)0.0144 (3)0.0019 (3)0.0019 (3)0.0019 (3)
Na20.0232 (4)0.0232 (4)0.0232 (4)0.0016 (3)0.0016 (3)0.0016 (3)
Ba20.0232 (4)0.0232 (4)0.0232 (4)0.0016 (3)0.0016 (3)0.0016 (3)
Fe10.0104 (2)0.0104 (2)0.0104 (2)0.0001 (2)0.0001 (2)0.0001 (2)
Fe20.0101 (2)0.0101 (2)0.0101 (2)0.0024 (2)0.0024 (2)0.0024 (2)
P0.0066 (4)0.0073 (4)0.0064 (4)0.0005 (3)0.0028 (3)0.0010 (3)
O10.045 (3)0.0170 (19)0.076 (4)0.0191 (19)0.015 (3)0.015 (2)
O20.029 (2)0.061 (3)0.042 (3)0.003 (2)0.025 (2)0.031 (2)
O30.0120 (16)0.063 (3)0.035 (2)0.0091 (18)0.0085 (16)0.023 (2)
O4A0.020 (4)0.066 (5)0.031 (3)0.020 (3)0.015 (3)0.040 (3)
O4B0.020 (4)0.066 (5)0.031 (3)0.020 (3)0.015 (3)0.040 (3)
Geometric parameters (Å, º) top
Na1—O1i2.864 (12)Ba2—O3xiii2.772 (5)
Na1—O12.864 (12)Ba2—O3xiv2.772 (5)
Na1—O1ii2.864 (12)Ba2—O2ii2.952 (5)
Na1—O4Biii2.86 (3)Ba2—O22.952 (5)
Na1—O4Biv2.86 (3)Ba2—O2i2.952 (5)
Na1—O4Bv2.86 (3)Ba2—O4Avi3.047 (7)
Na1—O4Avi3.045 (17)Ba2—O4Avii3.047 (7)
Na1—O4Avii3.045 (17)Ba2—O4Aviii3.047 (7)
Na1—O4Aviii3.045 (17)Fe1—O2ii1.979 (4)
Na1—O2ix2.763 (17)Fe1—O2xv1.979 (4)
Na1—O2x2.763 (17)Fe1—O2xvi1.979 (4)
Na1—O2xi2.763 (17)Fe1—O3xiii1.990 (4)
Ba1—O1i2.753 (7)Fe1—O31.990 (4)
Ba1—O12.753 (7)Fe1—O3xvii1.990 (4)
Ba1—O1ii2.753 (7)Fe1—Ba1xviii3.6878 (19)
Ba1—O4Biii2.89 (3)Fe1—Ba2iv3.7867 (6)
Ba1—O4Biv2.89 (3)Fe1—Ba2xv3.7867 (6)
Ba1—O4Bv2.89 (3)Fe2—O4Bxix1.946 (18)
Ba1—O4Avi2.902 (10)Fe2—O4Bii1.946 (18)
Ba1—O4Avii2.902 (10)Fe2—O4Bxii1.946 (18)
Ba1—O4Aviii2.902 (10)Fe2—O1xx1.984 (5)
Ba1—O2ix2.950 (6)Fe2—O1xxi1.984 (5)
Ba1—O2x2.950 (6)Fe2—O1xxii1.984 (5)
Ba1—O2xi2.950 (6)Fe2—O4Axix1.982 (7)
Na2—O3xii2.604 (8)Fe2—O4Aii1.982 (7)
Na2—O3xiii2.604 (8)Fe2—O4Axii1.982 (7)
Na2—O3xiv2.604 (8)P—O4B1.470 (18)
Na2—O23.004 (6)P—O1xxiii1.493 (4)
Na2—O2i3.004 (6)P—O2xxiii1.506 (4)
Na2—O2ii3.004 (6)P—O31.526 (4)
Ba2—O3xii2.772 (5)P—O4A1.541 (7)
O1i—Na1—O194.9 (5)O2ix—Ba1—O2xi55.17 (13)
O1i—Na1—O1ii94.9 (5)O2x—Ba1—O2xi55.17 (13)
O1—Na1—O1ii94.9 (5)O3xii—Na2—O3xiii100.1 (3)
O1i—Na1—O4Biii58.0 (4)O3xii—Na2—O3xiv100.1 (3)
O1—Na1—O4Biii79.6 (4)O3xiii—Na2—O3xiv100.1 (3)
O1ii—Na1—O4Biii151.3 (7)O3xii—Na2—O283.46 (16)
O1i—Na1—O4Biv151.3 (7)O3xiii—Na2—O2158.5 (4)
O1—Na1—O4Biv58.0 (4)O3xiv—Na2—O258.53 (12)
O1ii—Na1—O4Biv79.6 (4)O3xii—Na2—O2i58.53 (12)
O4Biii—Na1—O4Biv118.89 (19)O3xiii—Na2—O2i83.46 (16)
O1i—Na1—O4Bv79.6 (4)O3xiv—Na2—O2i158.5 (4)
O1—Na1—O4Bv151.3 (7)O2—Na2—O2i115.68 (18)
O1ii—Na1—O4Bv58.0 (4)O3xii—Na2—O2ii158.5 (4)
O4Biii—Na1—O4Bv118.89 (19)O3xiii—Na2—O2ii58.53 (12)
O4Biv—Na1—O4Bv118.89 (19)O3xiv—Na2—O2ii83.46 (16)
O1i—Na1—O4Avi46.9 (2)O2—Na2—O2ii115.68 (18)
O1—Na1—O4Avi107.0 (6)O2i—Na2—O2ii115.68 (18)
O1ii—Na1—O4Avi49.5 (3)O3xii—Ba2—O3xiii92.09 (15)
O1i—Na1—O4Avii49.5 (3)O3xii—Ba2—O3xiv92.09 (15)
O1—Na1—O4Avii46.9 (2)O3xiii—Ba2—O3xiv92.09 (15)
O1ii—Na1—O4Avii107.0 (6)O3xii—Ba2—O2ii148.54 (14)
O1i—Na1—O4Aviii107.0 (6)O3xiii—Ba2—O2ii57.63 (12)
O1—Na1—O4Aviii49.5 (3)O3xiv—Ba2—O2ii81.64 (14)
O1ii—Na1—O4Aviii46.9 (2)O3xii—Ba2—O281.64 (14)
O4Avi—Na1—O4Aviii81.1 (5)O3xiii—Ba2—O2148.54 (14)
O4Avii—Na1—O4Aviii81.1 (5)O3xiv—Ba2—O257.63 (12)
O1i—Na1—O2ix97.97 (19)O2ii—Ba2—O2118.95 (3)
O1—Na1—O2ix104.0 (2)O3xii—Ba2—O2i57.63 (12)
O1ii—Na1—O2ix156.0 (6)O3xiii—Ba2—O2i81.64 (14)
O4Biv—Na1—O2ix97.9 (6)O3xiv—Ba2—O2i148.54 (14)
O4Bv—Na1—O2ix104.6 (6)O2ii—Ba2—O2i118.95 (3)
O4Avi—Na1—O2ix134.2 (2)O2—Ba2—O2i118.95 (3)
O4Avii—Na1—O2ix96.81 (16)O3xii—Ba2—O4Avi104.95 (16)
O4Aviii—Na1—O2ix144.2 (3)O3xiii—Ba2—O4Avi83.7 (2)
O1i—Na1—O2x156.0 (6)O3xiv—Ba2—O4Avi162.54 (16)
O1—Na1—O2x97.97 (19)O2ii—Ba2—O4Avi81.80 (17)
O1ii—Na1—O2x104.0 (2)O2—Ba2—O4Avi127.8 (2)
O4Biii—Na1—O2x104.6 (6)O2i—Ba2—O4Avi47.59 (16)
O4Biv—Na1—O2x49.4 (4)O3xii—Ba2—O4Avii83.7 (2)
O4Bv—Na1—O2x97.9 (6)O3xiii—Ba2—O4Avii162.54 (16)
O4Avi—Na1—O2x144.2 (3)O3xiv—Ba2—O4Avii104.95 (16)
O4Avii—Na1—O2x134.2 (2)O2ii—Ba2—O4Avii127.8 (2)
O4Aviii—Na1—O2x96.81 (16)O2—Ba2—O4Avii47.59 (16)
O2ix—Na1—O2x59.2 (4)O2i—Ba2—O4Avii81.80 (17)
O1i—Na1—O2xi104.0 (2)O4Avi—Ba2—O4Avii81.1 (3)
O1—Na1—O2xi156.0 (6)O3xii—Ba2—O4Aviii162.54 (17)
O1ii—Na1—O2xi97.97 (19)O3xiii—Ba2—O4Aviii104.95 (16)
O4Biii—Na1—O2xi97.9 (6)O3xiv—Ba2—O4Aviii83.7 (2)
O4Biv—Na1—O2xi104.6 (6)O2ii—Ba2—O4Aviii47.59 (16)
O4Avi—Na1—O2xi96.81 (16)O2—Ba2—O4Aviii81.80 (17)
O4Avii—Na1—O2xi144.2 (3)O2i—Ba2—O4Aviii127.8 (2)
O4Aviii—Na1—O2xi134.2 (2)O4Avi—Ba2—O4Aviii81.1 (3)
O2ix—Na1—O2xi59.2 (4)O4Avii—Ba2—O4Aviii81.1 (3)
O2x—Na1—O2xi59.2 (4)O2ii—Fe1—O2xv87.3 (2)
O1i—Ba1—O1100.10 (14)O2ii—Fe1—O2xvi87.3 (2)
O1i—Ba1—O1ii100.10 (14)O2xv—Fe1—O2xvi87.3 (2)
O1—Ba1—O1ii100.10 (14)O2ii—Fe1—O3xiii88.26 (18)
O1i—Ba1—O4Biii58.8 (4)O2xv—Fe1—O3xiii89.2 (2)
O1—Ba1—O4Biii80.9 (4)O2xvi—Fe1—O3xiii174.5 (2)
O1ii—Ba1—O4Biii158.5 (4)O2ii—Fe1—O3174.5 (2)
O1i—Ba1—O4Biv158.5 (4)O2xv—Fe1—O388.26 (18)
O1—Ba1—O4Biv58.8 (4)O2xvi—Fe1—O389.2 (2)
O1ii—Ba1—O4Biv80.9 (4)O3xiii—Fe1—O395.0 (2)
O4Biii—Ba1—O4Biv116.8 (2)O2ii—Fe1—O3xvii89.2 (2)
O1i—Ba1—O4Bv80.9 (4)O2xv—Fe1—O3xvii174.5 (2)
O1—Ba1—O4Bv158.5 (4)O2xvi—Fe1—O3xvii88.26 (18)
O1ii—Ba1—O4Bv58.8 (4)O3xiii—Fe1—O3xvii95.0 (2)
O4Biii—Ba1—O4Bv116.8 (2)O3—Fe1—O3xvii95.0 (2)
O4Biv—Ba1—O4Bv116.8 (2)O4Bxix—Fe2—O4Bii80.8 (9)
O1i—Ba1—O4Avi49.19 (16)O4Bxix—Fe2—O4Bxii80.8 (9)
O1—Ba1—O4Avi114.25 (19)O4Bii—Fe2—O4Bxii80.8 (9)
O1ii—Ba1—O4Avi51.94 (17)O4Bxix—Fe2—O1xx169.5 (6)
O1i—Ba1—O4Avii51.94 (17)O4Bii—Fe2—O1xx89.8 (8)
O1—Ba1—O4Avii49.19 (16)O4Bxii—Fe2—O1xx93.0 (5)
O1ii—Ba1—O4Avii114.25 (19)O4Bxix—Fe2—O1xxi93.0 (5)
O1i—Ba1—O4Aviii114.25 (19)O4Bii—Fe2—O1xxi169.5 (6)
O1—Ba1—O4Aviii51.94 (17)O4Bxii—Fe2—O1xxi89.8 (8)
O1ii—Ba1—O4Aviii49.19 (16)O1xx—Fe2—O1xxi95.5 (3)
O4Avi—Ba1—O4Aviii86.1 (2)O4Bxix—Fe2—O1xxii89.8 (8)
O4Avii—Ba1—O4Aviii86.1 (2)O4Bii—Fe2—O1xxii93.0 (5)
O1i—Ba1—O2ix96.20 (14)O4Bxii—Fe2—O1xxii169.5 (6)
O1—Ba1—O2ix102.04 (15)O1xx—Fe2—O1xxii95.5 (3)
O1ii—Ba1—O2ix149.64 (14)O1xxi—Fe2—O1xxii95.5 (3)
O4Biii—Ba1—O2ix47.5 (4)O1xx—Fe2—O4Axix168.6 (3)
O4Biv—Ba1—O2ix93.1 (4)O1xxi—Fe2—O4Axix77.4 (3)
O4Bv—Ba1—O2ix99.2 (4)O1xxii—Fe2—O4Axix94.1 (3)
O4Avi—Ba1—O2ix132.27 (18)O4Bxix—Fe2—O4Aii78.2 (6)
O4Avii—Ba1—O2ix95.97 (17)O4Bii—Fe2—O4Aii15.9 (5)
O4Aviii—Ba1—O2ix141.66 (18)O4Bxii—Fe2—O4Aii95.9 (8)
O1i—Ba1—O2x149.64 (14)O1xx—Fe2—O4Aii94.1 (3)
O1—Ba1—O2x96.20 (14)O1xxi—Fe2—O4Aii168.6 (3)
O1ii—Ba1—O2x102.04 (15)O1xxii—Fe2—O4Aii77.4 (3)
O4Biii—Ba1—O2x99.2 (4)O4Axix—Fe2—O4Aii94.0 (3)
O4Biv—Ba1—O2x47.5 (4)O1xx—Fe2—O4Axii77.4 (3)
O4Bv—Ba1—O2x93.1 (4)O1xxi—Fe2—O4Axii94.1 (3)
O4Avi—Ba1—O2x141.66 (18)O1xxii—Fe2—O4Axii168.6 (3)
O4Avii—Ba1—O2x132.27 (18)O4Axix—Fe2—O4Axii94.0 (3)
O4Aviii—Ba1—O2x95.97 (17)O4Aii—Fe2—O4Axii94.0 (3)
O2ix—Ba1—O2x55.17 (13)O4B—P—O1xxiii119.9 (10)
O1i—Ba1—O2xi102.04 (15)O4B—P—O2xxiii104.3 (11)
O1—Ba1—O2xi149.64 (14)O1xxiii—P—O2xxiii112.9 (3)
O1ii—Ba1—O2xi96.20 (14)O4B—P—O397.0 (6)
O4Biii—Ba1—O2xi93.1 (4)O1xxiii—P—O3112.2 (3)
O4Biv—Ba1—O2xi99.2 (4)O2xxiii—P—O3109.2 (3)
O4Bv—Ba1—O2xi47.5 (4)O4B—P—O4A20.6 (6)
O4Avi—Ba1—O2xi95.97 (16)O1xxiii—P—O4A102.0 (4)
O4Avii—Ba1—O2xi141.66 (18)O2xxiii—P—O4A105.3 (4)
O4Aviii—Ba1—O2xi132.27 (18)O3—P—O4A115.1 (3)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y+1/2, z+3/2, x+1; (iv) x+1, y+1/2, z+3/2; (v) z+3/2, x+1, y+1/2; (vi) y, z, x+1; (vii) x+1, y, z; (viii) z, x+1, y; (ix) y+1/2, z+3/2, x+2; (x) x+2, y+1/2, z+3/2; (xi) z+3/2, x+2, y+1/2; (xii) y+3/2, z+1, x+1/2; (xiii) z+1, x+1/2, y+3/2; (xiv) x+1/2, y+3/2, z+1; (xv) x1/2, y+3/2, z+1; (xvi) y+1, z+1/2, x+3/2; (xvii) y1/2, z+3/2, x+1; (xviii) x+3/2, y+2, z1/2; (xix) x+1, y1/2, z+3/2; (xx) z+3/2, x+1, y1/2; (xxi) y+2, z1/2, x+3/2; (xxii) x, y1, z; (xxiii) x1, y, z.

Experimental details

Crystal data
Chemical formulaNaBaFe2(PO4)3
Mr556.94
Crystal system, space groupCubic, P213
Temperature (K)293
a (Å)9.796 (1)
V3)940.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.82
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.35, 0.46
No. of measured, independent and
observed [I > 2σ(I)] reflections
2114, 657, 644
Rint0.082
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 0.92
No. of reflections657
No. of parameters70
No. of restraints4
Δρmax, Δρmin (e Å3)0.57, 0.49
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.03 (3)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998).

Selected bond angles (º) top
O4Bi—Fe2—O1ii89.8 (8)O3—P—O4A115.1 (3)
Symmetry codes: (i) z, x, y; (ii) z+3/2, x+1, y1/2.
 

References

First citationBattle, P. D., Cheetham, A. K., Harrison, W. T. A. & Long, G. J. (1986). J. Solid State Chem. 62, 16–25.  CrossRef CAS Web of Science Google Scholar
First citationBattle, P. D., Gibb, T. C., Nixon, S. & Harrison, W. T. A. (1988). J. Solid State Chem. 75, 21–29.  CrossRef CAS Web of Science Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMoffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199–258.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPadhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188–1194.  CrossRef CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds