inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-hydroxido-μ4-sulfato-neodym­ium(III)]

aSchool of Life Sciences, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: jingmeilu@yahoo.cn

(Received 2 July 2008; accepted 13 July 2008; online 19 July 2008)

The title compound, [Nd(OH)(SO4)]n, was obtained hydro­thermally from an aqueous solution of neodymium nitrate, 1,2-propane­diamine and sulfuric acid. The structure features nona­coordinated neodymium with sulfate and hydroxide anions acting as bridging ligands. The OH group forms a weak O—H⋯O hydrogen bond with an O⋯O distance of 3.224 (5) Å.

Related literature

For related literature, see: Doran et al. (2002[Doran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946-2947.]); Xu, Ding, Zhou & Liu (2006[Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749-m1750.]); Xu, Ding, Feng et al. (2006[Xu, Y., Ding, S.-H., Feng, W.-J., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, i147-i149.]); Xu et al. (2007[Xu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem. 2180, 2020-2025.]); Yuan et al. (2004[Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24-26.]); Zhang et al. (2004[Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.]); Ding et al. (2006[Ding, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269-i271.]).

Experimental

Crystal data
  • [Nd(OH)(SO4)]

  • Mr = 257.31

  • Monoclinic, P 21 /n

  • a = 4.4678 (9) Å

  • b = 12.432 (2) Å

  • c = 6.8575 (13) Å

  • β = 106.324 (3)°

  • V = 365.53 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.66 mm−1

  • T = 293 (2) K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.322, Tmax = 0.473 (expected range = 0.282–0.415)

  • 1837 measured reflections

  • 675 independent reflections

  • 669 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.24

  • 675 reflections

  • 67 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −2.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O1i 0.83 (3) 2.43 (3) 3.224 (5) 160 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, the synthesis of new three dimensional lanthanide sulfates have received great attention, due to their functional applications in catalysis, ion-exchange, and optical device (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding, Feng et al., 2006; Xu, Ding, Zhou & Liu, 2006; Doran et al., 2002, Xu et al., 2007). In this work, we designed and synthesized the title compound, neodymium(3+) sulfate hydroxide, which features a three–dimensional framework constructed from NdO9 polyhedra and SO4 tetrahedra.

Nd(SO4)(OH) is isostructural with La(SO4)(OH) (Zhang et al.,2004) and Eu(SO4)(OH)(Ding et al.,2006), the framework of title compound constructed from NdO9 polyhedra and SO4 tetrahedra. As show in Fig. 1, the asymmetric unit contains one Nd3+, one SO42– group and one hydroxide group. The Nd3+ is coordinated by six bridging sulfate ions, each S atom makes four S–O–Nd linkages by sharing the bridging O atoms. The coordination sphere of Nd is completed by three OH- groups, which act as briding ligands between three Nd^3+^.

The O-H group is involved hydrogen bonding interactions with O1, O2 and O4, the distances of O—H···O are vary from 2.60 (2) to 2.90 (2) Å.

The Nd —O distances are between of 2.374 (4)– 2.800 (4)Å (Table 1)while the O—Nd—O angles are between 66.02 (13) and 141.55 (12)°. These bond distances and bond angles are in agreement with those found in the reported rare-earth compounds (Zhang et al.,2004; Ding et al.,2006). The bond distances of S—O and angles of O—S—O are unexceptional. Fig. 2 shows the three-dimensional arrangement in the unit cell, displaying the way the different Nd3+ are connected by bridging hydroxide and sulfates groups.

Related literature top

For related literature, see: Doran et al. (2002); Xu, Ding Zhou & Liu (2006); Xu, Ding, Feng et al. (2006); Xu et al. (2007); Yuan et al. (2004); Zhang et al. (2004); Ding et al. (2006).

Experimental top

Pink block crystals were synthesized hydrothermally from a mixture of Nd(NO3)3.6H2O, 1,2-propane diamine, H2SO4 and water. In a typical synthesis, Nd(NO3)3.6H2O (0.6066 g) was dissolved in a mixture of 1,2-propane diamine (0.2205 g) and water (3.2 ml) followed by the addition of H2SO4 (98%) (0.3093 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 7 days. After the autoclave was slowly cooled to room temperature, Pink block crystals of the title compound were obtained.

Refinement top

The H atom of water was located from difference map, while the distance of O—H was restrained as 0.85 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure for title compound. Displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in the unit cell of Nd(SO4)(OH).
Poly[µ2-hydroxido-µ4-sulfato-neodymium(III)] top
Crystal data top
[Nd(OH)(SO4)]F(000) = 468
Mr = 257.31Dx = 4.676 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 150 reflections
a = 4.4678 (9) Åθ = 2.3–22.5°
b = 12.432 (2) ŵ = 14.66 mm1
c = 6.8575 (13) ÅT = 293 K
β = 106.324 (3)°Block, pink
V = 365.53 (12) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
675 independent reflections
Radiation source: fine-focus sealed tube669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 35
Tmin = 0.322, Tmax = 0.473k = 1415
1837 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.035P)2 + 0.7631P]
where P = (Fo2 + 2Fc2)/3
675 reflections(Δ/σ)max = 0.001
67 parametersΔρmax = 0.56 e Å3
1 restraintΔρmin = 2.28 e Å3
Crystal data top
[Nd(OH)(SO4)]V = 365.53 (12) Å3
Mr = 257.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4678 (9) ŵ = 14.66 mm1
b = 12.432 (2) ÅT = 293 K
c = 6.8575 (13) Å0.10 × 0.08 × 0.06 mm
β = 106.324 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
669 reflections with I > 2σ(I)
Tmin = 0.322, Tmax = 0.473Rint = 0.013
1837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0221 restraint
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.56 e Å3
675 reflectionsΔρmin = 2.28 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.14116 (6)0.93569 (2)0.80136 (4)0.00655 (15)
S10.4852 (3)0.85400 (10)0.38900 (18)0.0059 (3)
O10.3672 (9)0.8343 (3)0.5628 (6)0.0136 (8)
O20.2485 (9)0.9040 (3)0.2196 (6)0.0127 (8)
O30.7563 (9)0.9295 (3)0.4498 (6)0.0105 (8)
O40.5923 (9)0.7539 (3)0.3200 (6)0.0129 (8)
O50.3028 (9)1.0847 (3)1.0385 (6)0.0081 (7)
H10.295 (14)1.148 (2)0.997 (9)0.010*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0075 (2)0.0051 (2)0.0073 (2)0.00001 (8)0.00245 (14)0.00073 (8)
S10.0073 (6)0.0040 (6)0.0068 (6)0.0003 (4)0.0026 (5)0.0001 (4)
O10.0172 (19)0.0129 (19)0.0136 (19)0.0013 (16)0.0093 (16)0.0003 (15)
O20.0096 (18)0.0133 (18)0.0131 (18)0.0026 (16)0.0002 (15)0.0032 (15)
O30.0088 (19)0.008 (2)0.015 (2)0.0023 (13)0.0036 (16)0.0004 (13)
O40.0196 (19)0.0066 (19)0.015 (2)0.0037 (15)0.0092 (17)0.0002 (14)
O50.0080 (18)0.0034 (16)0.0122 (18)0.0005 (14)0.0016 (14)0.0027 (14)
Geometric parameters (Å, º) top
Nd1—O4i2.374 (4)S1—O11.453 (4)
Nd1—O5ii2.431 (4)S1—O41.459 (4)
Nd1—O52.437 (4)S1—O21.470 (4)
Nd1—O12.492 (4)S1—O31.496 (4)
Nd1—O3iii2.535 (4)O2—Nd1vi2.624 (4)
Nd1—O5iv2.536 (4)O2—Nd1viii2.800 (4)
Nd1—O3v2.538 (4)O3—Nd1iii2.535 (4)
Nd1—O2vi2.624 (4)O3—Nd1ix2.538 (4)
Nd1—O2vii2.800 (4)O4—Nd1x2.374 (4)
Nd1—Nd1iv3.6744 (7)O5—Nd1ii2.431 (4)
Nd1—Nd1ii3.9178 (7)O5—Nd1iv2.536 (4)
O4i—Nd1—O5ii88.26 (13)O4i—Nd1—Nd1iv109.65 (10)
O4i—Nd1—O5137.19 (13)O5ii—Nd1—Nd1iv103.34 (9)
O5ii—Nd1—O572.81 (14)O5—Nd1—Nd1iv43.41 (9)
O4i—Nd1—O166.02 (13)O1—Nd1—Nd1iv173.45 (9)
O5ii—Nd1—O172.10 (13)O3iii—Nd1—Nd1iv112.42 (8)
O5—Nd1—O1136.35 (13)O5iv—Nd1—Nd1iv41.33 (8)
O4i—Nd1—O3iii136.85 (12)O3v—Nd1—Nd1iv115.79 (9)
O5ii—Nd1—O3iii91.10 (13)O2vi—Nd1—Nd1iv49.41 (8)
O5—Nd1—O3iii82.80 (13)O2vii—Nd1—Nd1iv45.37 (8)
O1—Nd1—O3iii72.80 (12)O4i—Nd1—Nd1ii115.94 (9)
O4i—Nd1—O5iv77.43 (13)O5ii—Nd1—Nd1ii36.45 (9)
O5ii—Nd1—O5iv128.19 (16)O5—Nd1—Nd1ii36.35 (9)
O5—Nd1—O5iv84.74 (13)O1—Nd1—Nd1ii105.03 (9)
O1—Nd1—O5iv138.09 (13)O3iii—Nd1—Nd1ii86.21 (9)
O3iii—Nd1—O5iv132.32 (12)O5iv—Nd1—Nd1ii109.06 (9)
O4i—Nd1—O3v88.46 (12)O3v—Nd1—Nd1ii151.19 (8)
O5ii—Nd1—O3v139.42 (13)O2vi—Nd1—Nd1ii97.41 (9)
O5—Nd1—O3v130.63 (11)O2vii—Nd1—Nd1ii58.27 (8)
O1—Nd1—O3v69.68 (13)Nd1iv—Nd1—Nd1ii72.017 (16)
O3iii—Nd1—O3v65.06 (14)O1—S1—O4110.5 (2)
O5iv—Nd1—O3v90.27 (13)O1—S1—O2111.9 (2)
O4i—Nd1—O2vi133.45 (13)O4—S1—O2109.4 (2)
O5ii—Nd1—O2vi133.02 (12)O1—S1—O3109.2 (2)
O5—Nd1—O2vi61.74 (12)O4—S1—O3108.2 (2)
O1—Nd1—O2vi137.14 (12)O2—S1—O3107.5 (2)
O3iii—Nd1—O2vi72.81 (13)S1—O1—Nd1139.5 (2)
O5iv—Nd1—O2vi60.80 (12)S1—O2—Nd1vi133.1 (2)
O3v—Nd1—O2vi73.07 (12)S1—O2—Nd1viii138.3 (2)
O4i—Nd1—O2vii78.28 (12)Nd1vi—O2—Nd1viii85.22 (11)
O5ii—Nd1—O2vii70.32 (12)S1—O3—Nd1iii120.8 (2)
O5—Nd1—O2vii59.36 (12)S1—O3—Nd1ix124.3 (2)
O1—Nd1—O2vii128.08 (12)Nd1iii—O3—Nd1ix114.94 (14)
O3iii—Nd1—O2vii141.03 (12)S1—O4—Nd1x155.2 (3)
O5iv—Nd1—O2vii58.11 (12)Nd1ii—O5—Nd1107.19 (14)
O3v—Nd1—O2vii147.55 (12)Nd1ii—O5—Nd1iv128.19 (16)
O2vi—Nd1—O2vii94.78 (11)Nd1—O5—Nd1iv95.26 (12)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+2; (iii) x+1, y+2, z+1; (iv) x, y+2, z+2; (v) x1, y, z; (vi) x, y+2, z+1; (vii) x, y, z+1; (viii) x, y, z1; (ix) x+1, y, z; (x) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O1xi0.83 (3)2.43 (3)3.224 (5)160 (6)
Symmetry code: (xi) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Nd(OH)(SO4)]
Mr257.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.4678 (9), 12.432 (2), 6.8575 (13)
β (°) 106.324 (3)
V3)365.53 (12)
Z4
Radiation typeMo Kα
µ (mm1)14.66
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.322, 0.473
No. of measured, independent and
observed [I > 2σ(I)] reflections
1837, 675, 669
Rint0.013
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.24
No. of reflections675
No. of parameters67
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 2.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O1i0.83 (3)2.43 (3)3.224 (5)160 (6)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Zhang for help with the structural analysis.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationDing, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269–i271.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDoran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Ding, S.-H., Feng, W.-J., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, i147–i149.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem. 2180, 2020–2025.  Web of Science CrossRef Google Scholar
First citationXu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749–m1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds