organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-acetonyl-4-hydr­­oxy-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aInstitute of Chemistry, University of The Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cSchool of Chemistry, University of Southampton, England, and dChemistry Department, University of Science and Technology, Bannu, Pakistan
*Correspondence e-mail: matloob_123@yahoo.com

(Received 19 June 2008; accepted 24 June 2008; online 5 July 2008)

In the mol­ecule of the title compound, C13H13NO6S, the thia­zine ring adopts a distorted sofa conformation. The enolic H atom is involved in intra­molecular O—H⋯O hydrogen bonding besides the weaker C—H⋯O=S and C—H⋯O=C inter­actions.

Related literature

For related literature, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175—1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.]); Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Braun (1923[Braun, J. (1923). Chem. Ber. 56, 2332-2343.]); Fabiola et al. (1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]); Kojić-Prodić & Rużić-Toroš (1982[Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171—1175.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Weast et al. (1984[Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO6S

  • Mr = 311.30

  • Orthorhombic, P c a 21

  • a = 11.7982 (3) Å

  • b = 8.7206 (2) Å

  • c = 13.2474 (4) Å

  • V = 1362.99 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 (2) K

  • 0.50 × 0.30 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.961

  • 12553 measured reflections

  • 3095 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.13

  • 3095 reflections

  • 194 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1466 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.84 1.85 2.580 (2) 145
C3—H3A⋯O1i 0.95 2.37 3.286 (3) 163
C4—H4⋯O1ii 0.95 2.49 3.267 (3) 139
C11—H11A⋯O2 0.99 2.46 2.830 (3) 102
C11—H11B⋯O5 0.99 2.40 2.994 (3) 118
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z]; (ii) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzothiazine 1,1-dioxides are known to possess a versatile range of biological activities and have been synthesized continuously since the very first synthesis in 1923 (Braun, 1923). Among these, Piroxicam (Lombardino et al.,1971; Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic and anti-inflammatory activities and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess antibacterial properties (Zia-ur-Rehman et al., 2006). In continuation of our ongoing work (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008), we herein report the synthesis and crystal structure of the title compound.

In this paper, the structure of the title compound (I) is reported (Scheme and figure 1). The thiazine ring, involving two double bonds, exhibits a sofa conformation; with S1/C1/C6/C7 relatively planar and N1 showing significant departure from plane due to its pyramidal geometry. The enolic hydrogen on O3 is involved in intramolecular hydrogen bonding [O3—H3···O4] with the carbonyl oxygen at C4 giving rise to a six-membered hydrogen bond ring (Table 1). The C1—S1 [1.757 (2)Å] bond is shorter than a normal C—S single bond (1.81–2.55Å) (Weast et al., 1984) due to partial double bond character and is in agreement with similar molecules (Kojić-Prodić & Ružić-Toroŝ, 1982; Fabiola et al., 1998]. Each molecule is further linked to neighbouring molecules via weaker C—H···O=S and C—H···O=C interactions (Table 1).

Related literature top

For related literature, see: Ahmad et al. (2008); Zia-ur-Rehman et al. (2005, 2006, 2007).

For related literature, see: Bihovsky et al. (2004); Braun (1923); Fabiola et al. (1998); Kojić-Prodić & Rużić-Toroš (1982); Lombardino et al. (1971); Turck et al. (1996); Weast et al. (1984).

Experimental top

A mixture of mono chloroacetone (1.94 ml; 23.5 mmoles), methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (5.0 g,19.6 mmoles), dimethyl formamide (10.0 ml) and anhydrous sodium carbonate (4.2 g,39.2 mmoles) was stirred under nitrogen atmosphere for 3.0 h at 120 oC.The contents were then cooled to room temperature and poured over crushed ice.Title compound (I) was precipitated as white precipitates which were washed with excess of water, filtered and dried. Yield: 4.39 g; 72%; M.p. 455 K. Crystals were grown by slow evaporation of solution of (I) in Chloroform-Methanol (1:1) mixture.

Refinement top

All hydrogen atoms were identified in the difference map and subsequently fixed in ideal positions and treated as riding on their parent atoms. In the case of the methyl and hydroxyl H atoms the torsion angles were freely refined (three additional parameters). The following distances were used: Methyl C—H 0.98 Å. ° Methylene C—H 0.99 Å. ° Aromatic C—H 0.95 Å. ° Hydroxyl O—H 0.84 Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonds and other intermolecular interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 2-acetonyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C13H13NO6SF(000) = 648
Mr = 311.30Dx = 1.517 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6916 reflections
a = 11.7982 (3) Åθ = 2.9–27.5°
b = 8.7206 (2) ŵ = 0.27 mm1
c = 13.2474 (4) ÅT = 120 K
V = 1362.99 (6) Å3Block, colourless
Z = 40.50 × 0.30 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3095 independent reflections
Radiation source: Bruker Nonius FR591 Rotating Anode2849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.879, Tmax = 0.961l = 1717
12553 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.57 e Å3
3095 reflectionsΔρmin = 0.64 e Å3
194 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.067 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1466 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (8)
Crystal data top
C13H13NO6SV = 1362.99 (6) Å3
Mr = 311.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.7982 (3) ŵ = 0.27 mm1
b = 8.7206 (2) ÅT = 120 K
c = 13.2474 (4) Å0.50 × 0.30 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2849 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.961Rint = 0.041
12553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.57 e Å3
S = 1.13Δρmin = 0.64 e Å3
3095 reflectionsAbsolute structure: Flack (1983), 1466 Friedel pairs
194 parametersAbsolute structure parameter: 0.00 (8)
1 restraint
Special details top

Experimental. SADABS was used to perform the Absorption correction Estimated minimum and maximum transmission: 0.6723 0.7456 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12520 (4)0.72682 (5)0.71113 (5)0.01779 (15)
O10.14000 (12)0.85887 (19)0.64793 (13)0.0249 (4)
O20.21431 (12)0.61542 (17)0.71678 (14)0.0255 (4)
O30.19773 (12)0.91805 (17)0.77253 (12)0.0204 (3)
H30.24400.89850.72610.031*
O40.27020 (12)0.78295 (17)0.61171 (13)0.0229 (4)
O50.15104 (13)0.62248 (18)0.53092 (12)0.0234 (4)
O60.03227 (14)0.48788 (19)0.85565 (13)0.0287 (4)
N10.00988 (15)0.63873 (19)0.67500 (15)0.0172 (4)
C10.08889 (18)0.7943 (2)0.83187 (17)0.0173 (4)
C20.16859 (19)0.8042 (3)0.90839 (18)0.0231 (5)
H20.24360.76750.89840.028*
C30.1371 (2)0.8685 (3)0.9994 (2)0.0258 (5)
H3A0.19090.87651.05250.031*
C40.0269 (2)0.9218 (3)1.01423 (18)0.0244 (5)
H40.00610.96591.07710.029*
C50.05253 (19)0.9105 (2)0.93717 (17)0.0195 (4)
H50.12740.94730.94760.023*
C60.02314 (17)0.8457 (2)0.84476 (17)0.0169 (4)
C70.10643 (17)0.8267 (2)0.76334 (17)0.0156 (4)
C80.09225 (18)0.7266 (2)0.68505 (15)0.0155 (4)
C90.17931 (18)0.7142 (2)0.60656 (16)0.0172 (4)
C100.2356 (2)0.6047 (3)0.4522 (2)0.0327 (6)
H10A0.30740.57160.48220.049*
H10B0.20980.52750.40350.049*
H10C0.24650.70290.41760.049*
C110.00404 (19)0.4701 (2)0.67907 (18)0.0202 (4)
H11A0.07630.42770.65320.024*
H11B0.05720.43500.63350.024*
C120.01724 (18)0.4058 (2)0.78301 (19)0.0216 (5)
C130.0175 (2)0.2338 (3)0.7899 (2)0.0329 (6)
H13A0.01540.20280.86090.049*
H13B0.04920.19280.75490.049*
H13C0.08640.19350.75820.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0125 (2)0.0212 (2)0.0196 (2)0.00081 (16)0.0010 (2)0.0031 (3)
O10.0198 (8)0.0285 (8)0.0263 (10)0.0038 (6)0.0031 (6)0.0092 (7)
O20.0170 (7)0.0302 (8)0.0293 (9)0.0066 (5)0.0005 (7)0.0005 (8)
O30.0159 (7)0.0222 (7)0.0232 (8)0.0050 (5)0.0035 (6)0.0042 (7)
O40.0176 (8)0.0256 (7)0.0256 (8)0.0052 (6)0.0034 (6)0.0057 (7)
O50.0237 (9)0.0267 (9)0.0198 (8)0.0058 (6)0.0048 (6)0.0056 (7)
O60.0361 (10)0.0257 (8)0.0243 (9)0.0012 (7)0.0043 (7)0.0048 (7)
N10.0148 (9)0.0162 (7)0.0205 (9)0.0014 (6)0.0018 (7)0.0003 (7)
C10.0173 (10)0.0157 (8)0.0190 (10)0.0019 (7)0.0016 (9)0.0019 (9)
C20.0164 (11)0.0253 (10)0.0276 (12)0.0014 (8)0.0053 (9)0.0016 (10)
C30.0267 (13)0.0267 (12)0.0241 (12)0.0015 (9)0.0110 (9)0.0007 (10)
C40.0310 (13)0.0232 (10)0.0191 (11)0.0003 (9)0.0031 (9)0.0014 (9)
C50.0205 (11)0.0158 (9)0.0222 (10)0.0019 (7)0.0009 (9)0.0011 (9)
C60.0181 (11)0.0119 (8)0.0208 (11)0.0029 (7)0.0013 (8)0.0036 (8)
C70.0129 (9)0.0150 (9)0.0188 (10)0.0008 (7)0.0016 (8)0.0030 (8)
C80.0137 (9)0.0141 (9)0.0188 (11)0.0009 (7)0.0004 (8)0.0021 (8)
C90.0161 (10)0.0187 (9)0.0168 (10)0.0009 (8)0.0005 (8)0.0004 (8)
C100.0323 (14)0.0408 (12)0.0250 (12)0.0121 (11)0.0117 (10)0.0120 (12)
C110.0205 (10)0.0168 (9)0.0234 (11)0.0035 (8)0.0005 (8)0.0019 (9)
C120.0144 (11)0.0200 (10)0.0303 (13)0.0005 (7)0.0008 (9)0.0035 (10)
C130.0332 (15)0.0194 (11)0.0460 (17)0.0012 (9)0.0037 (12)0.0042 (11)
Geometric parameters (Å, º) top
S1—O21.4335 (14)C4—C51.389 (3)
S1—O11.4345 (17)C4—H40.9500
S1—N11.6341 (19)C5—C61.392 (3)
S1—C11.757 (2)C5—H50.9500
O3—C71.345 (2)C6—C71.469 (3)
O3—H30.8400C7—C81.366 (3)
O4—C91.231 (3)C8—C91.465 (3)
O5—C91.325 (3)C10—H10A0.9800
O5—C101.452 (3)C10—H10B0.9800
O6—C121.212 (3)C10—H10C0.9800
N1—C81.434 (3)C11—C121.508 (3)
N1—C111.473 (3)C11—H11A0.9900
C1—C21.385 (3)C11—H11B0.9900
C1—C61.406 (3)C12—C131.503 (3)
C2—C31.381 (4)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.394 (4)C13—H13C0.9800
C3—H3A0.9500
O2—S1—O1119.03 (10)O3—C7—C6113.72 (18)
O2—S1—N1107.90 (9)C8—C7—C6123.24 (18)
O1—S1—N1107.93 (10)C7—C8—N1120.98 (18)
O2—S1—C1110.99 (11)C7—C8—C9119.99 (18)
O1—S1—C1106.99 (10)N1—C8—C9118.93 (18)
N1—S1—C1102.77 (10)O4—C9—O5123.7 (2)
C7—O3—H3109.5O4—C9—C8122.39 (19)
C9—O5—C10115.80 (17)O5—C9—C8113.86 (18)
C8—N1—C11119.38 (17)O5—C10—H10A109.5
C8—N1—S1114.92 (13)O5—C10—H10B109.5
C11—N1—S1119.83 (15)H10A—C10—H10B109.5
C2—C1—C6121.9 (2)O5—C10—H10C109.5
C2—C1—S1121.44 (17)H10A—C10—H10C109.5
C6—C1—S1116.52 (16)H10B—C10—H10C109.5
C3—C2—C1118.8 (2)N1—C11—C12114.36 (18)
C3—C2—H2120.6N1—C11—H11A108.7
C1—C2—H2120.6C12—C11—H11A108.7
C2—C3—C4120.6 (2)N1—C11—H11B108.7
C2—C3—H3A119.7C12—C11—H11B108.7
C4—C3—H3A119.7H11A—C11—H11B107.6
C5—C4—C3120.1 (2)O6—C12—C13122.8 (2)
C5—C4—H4119.9O6—C12—C11121.97 (18)
C3—C4—H4119.9C13—C12—C11115.3 (2)
C6—C5—C4120.4 (2)C12—C13—H13A109.5
C6—C5—H5119.8C12—C13—H13B109.5
C4—C5—H5119.8H13A—C13—H13B109.5
C5—C6—C1118.06 (19)C12—C13—H13C109.5
C5—C6—C7121.68 (19)H13A—C13—H13C109.5
C1—C6—C7120.2 (2)H13B—C13—H13C109.5
O3—C7—C8123.04 (19)
O2—S1—N1—C8167.94 (15)C5—C6—C7—O320.3 (3)
O1—S1—N1—C862.23 (17)C1—C6—C7—O3161.46 (18)
C1—S1—N1—C850.61 (17)C5—C6—C7—C8160.21 (19)
O2—S1—N1—C1115.1 (2)C1—C6—C7—C818.0 (3)
O1—S1—N1—C11144.91 (16)O3—C7—C8—N1175.91 (18)
C1—S1—N1—C11102.25 (17)C6—C7—C8—N13.5 (3)
O2—S1—C1—C231.3 (2)O3—C7—C8—C90.6 (3)
O1—S1—C1—C2100.01 (18)C6—C7—C8—C9179.97 (18)
N1—S1—C1—C2146.46 (18)C11—N1—C8—C7118.1 (2)
O2—S1—C1—C6152.25 (15)S1—N1—C8—C734.9 (2)
O1—S1—C1—C676.41 (16)C11—N1—C8—C965.4 (3)
N1—S1—C1—C637.13 (17)S1—N1—C8—C9141.61 (16)
C6—C1—C2—C30.9 (3)C10—O5—C9—O40.7 (3)
S1—C1—C2—C3175.34 (17)C10—O5—C9—C8179.00 (18)
C1—C2—C3—C40.3 (3)C7—C8—C9—O45.5 (3)
C2—C3—C4—C50.1 (3)N1—C8—C9—O4177.96 (18)
C3—C4—C5—C60.2 (3)C7—C8—C9—O5174.79 (18)
C4—C5—C6—C10.7 (3)N1—C8—C9—O51.8 (3)
C4—C5—C6—C7177.53 (19)C8—N1—C11—C1273.3 (3)
C2—C1—C6—C51.1 (3)S1—N1—C11—C1278.4 (2)
S1—C1—C6—C5175.30 (15)N1—C11—C12—O62.6 (3)
C2—C1—C6—C7177.19 (19)N1—C11—C12—C13176.96 (19)
S1—C1—C6—C76.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.841.852.580 (2)145
C3—H3A···O1i0.952.373.286 (3)163
C4—H4···O1ii0.952.493.267 (3)139
C11—H11A···O20.992.462.830 (3)102
C11—H11B···O50.992.402.994 (3)118
Symmetry codes: (i) x+1/2, y, z; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO6S
Mr311.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)11.7982 (3), 8.7206 (2), 13.2474 (4)
V3)1362.99 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.50 × 0.30 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.879, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
12553, 3095, 2849
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.13
No. of reflections3095
No. of parameters194
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.64
Absolute structureFlack (1983), 1466 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.84001.85002.580 (2)145.00
C3—H3A···O1i0.95002.37003.286 (3)163.00
C4—H4···O1ii0.95002.49003.267 (3)139.00
C11—H11A···O20.99002.46002.830 (3)102.00
C11—H11B···O50.99002.40002.994 (3)118.00
Symmetry codes: (i) x+1/2, y, z; (ii) x, y+2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for the provision of a research grant for the project.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraun, J. (1923). Chem. Ber. 56, 2332-2343.  CrossRef Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171—1175.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationWeast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.  Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175—1178.  Web of Science CrossRef Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds