organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­nitro­phen­yl)acetohydrazide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bChemistry Department, Loughborough University, Loughborough LE11 3TU, England, and cInstitute of Chemistry, University of The Punjab, Lahore 54590, Pakistan
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 23 June 2008; accepted 27 June 2008; online 9 July 2008)

In the title compound, C8H8N4O5, the nitro groups ortho and para to the hydrazone group are twisted by 10.0 (2) and 3.6 (2)°, respectively, relative to the aromatic ring. The structure exhibits an intra­molecular N—H⋯O hydrogen bond between the hydrazide and ortho-nitro groups. There is a strong inter­molecular C=O⋯H—N hydrogen bond, giving rise to chains, and weaker ONO⋯NO2 [2.944 (2) Å] and C—H⋯O—N inter­actions linking the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Domiano et al. (1984[Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281-286.]); Guo (2007[Guo, H.-M. (2007). Acta Cryst. E63, o3123.]); Li et al. (1988[Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 657-665.]); Rudnicka & Osmialowska (1979[Rudnicka, G. & Osmialowska, Z. (1979). Acta Pol. Pharm. 36, 411-419.]); Sakamoto et al. (1993[Sakamoto, H., Goto, H., Yokoshima, M., Dobashi, M., Ishikawa, J., Doi, K. & Otomo, M. (1993). Bull. Chem. Soc. Jpn, 66, 2907-2914.]); Siddiqui et al. (2007[Siddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull. 55, 1014-1017.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O5

  • Mr = 240.18

  • Orthorhombic, P 21 21 21

  • a = 4.8585 (4) Å

  • b = 10.7703 (8) Å

  • c = 19.1059 (14) Å

  • V = 999.76 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 (2) K

  • 0.57 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.992

  • 11843 measured reflections

  • 1794 independent reflections

  • 1616 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.03

  • 1794 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.83 (2) 2.001 (18) 2.5942 (16) 127.9 (16)
N4—H4⋯O5i 0.85 (2) 1.95 (2) 2.7748 (16) 164.0 (17)
C5—H5⋯O4ii 0.95 2.44 3.249 (2) 143
C8—H8A⋯O2iii 0.98 2.58 3.269 (2) 128
C8—H8C⋯O3iv 0.98 2.57 3.527 (2) 165
Symmetry code: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The chemistry of hydrazones has been intensely investigated in recent years due to their excellent coordinating capability (Domiano et al., 1984) and pharmacological activities (Li et al., 1988). These compounds are also being used as precursors for the efficient synthesis of various condensed heterocycles in organic chemistry (Rudnicka & Osmialowska, 1979) and as highly selective metal scavengers (Sakamoto et al., 1993) in analytical chemistry. In continuation of our ongoing work on the synthesis of various heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006; Siddiqui et al., 2007), the title compound, (I), was synthesized by reacting 2,4-dinitrophenylhydrazine with acetic anhydride.

Most of the bond lengths and angles in (I) are similar to those in related molecules (Guo, 2007). The nitro groups ortho and para to the hydrazone group are twisted out of this plane by 10.0 (2) and 3.6 (2)°, respectively. The larger twist of the ortho-nitro group arises due to the desire to form an intramolecular hydrogen bond which results in a six-membered ring (Fig. 1 and Table 1). Each molecule also forms an intermolecular N—H···OC hydrogen bond giving rise to stacks of molecules parallel to a (Fig. 2). The hydrogen-bonded chains of (I) are further linked together into a three-dimensional network (Fig. 3) via weaker C—H···O—N interactions involving the nitro groups and methyl and aryl H atoms (range 2.4–2.6Å) along with some weak ONO···NO2 interactions [O1···N1i = 2.944 (2)Å; symmetry code: (i) -0.5+x, 1.5-y, 2-z].

Related literature top

For related literature, see: Domiano et al. (1984); Guo (2007); Li et al. (1988); Rudnicka & Osmialowska (1979); Sakamoto et al. (1993); Siddiqui et al. (2007); Zia-ur-Rehman, Choudary & Ahmad (2005); Zia-ur-Rehman, Choudary, Ahmad & Siddiqui (2006).

Experimental top

A mixture of 2,4-dinitrophenylhydrazine (1.981 g; 10.0 mmoles) and acetic anhydride (5.0 ml) was stirred for a period of six hours at room temperature. Then, this mixture was poured into ice cooled water and neutralized with 10% sodium bicarbonate solution. The precipitated solids were collected by filtration, washed and dried. Crystals suitable for X-ray crystallography were grown by slow evaporation of solution of the title compound in a mixture of ethanol and water (90:10); m.p. 471 K; yield: 82%.

Refinement top

1255 Friedel pairs were merged. H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å for aryl-H; 0.98 Å for methyl-H) using a riding model. H atoms on N had coordinates freely refined. Uiso values were set to 1.2Ueq of the carrier atom (1.5Ueq for methyl-H).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of molecules linked via intermolecular N—H···O=C hydrogen bonds parallel to a.
[Figure 3] Fig. 3. Perspective view of the three-dimensional crystal packing showing hydrogen-bonds and other intermolecular interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
N'-(2,4-Dinitrophenyl)acetohydrazide top
Crystal data top
C8H8N4O5F(000) = 496
Mr = 240.18Dx = 1.596 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3491 reflections
a = 4.8585 (4) Åθ = 2.9–27.8°
b = 10.7703 (8) ŵ = 0.14 mm1
c = 19.1059 (14) ÅT = 150 K
V = 999.76 (13) Å3Lath, orange
Z = 40.57 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1794 independent reflections
Radiation source: fine-focus sealed tube1616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 66
Tmin = 0.927, Tmax = 0.992k = 1515
11843 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: all non-H atoms found by direct methods
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: geom except NH coords freely refined
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
1794 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H8N4O5V = 999.76 (13) Å3
Mr = 240.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8585 (4) ŵ = 0.14 mm1
b = 10.7703 (8) ÅT = 150 K
c = 19.1059 (14) Å0.57 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1794 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1616 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.992Rint = 0.031
11843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
1794 reflectionsΔρmin = 0.17 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 1255 Friedel pairs. Friedels merged.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3396 (3)0.64098 (13)0.89834 (7)0.0206 (3)
N10.1186 (2)0.67553 (11)0.94555 (6)0.0239 (2)
O10.0352 (2)0.78314 (10)0.94499 (6)0.0298 (2)
O20.0219 (2)0.59512 (11)0.98457 (6)0.0349 (3)
C20.4679 (3)0.73783 (13)0.86286 (7)0.0234 (3)
H20.41530.82150.87100.028*
C30.6722 (3)0.70968 (14)0.81593 (7)0.0245 (3)
N20.8161 (3)0.81093 (13)0.78132 (7)0.0323 (3)
O30.7483 (3)0.91873 (12)0.79517 (7)0.0428 (3)
O41.0012 (3)0.78354 (13)0.73998 (7)0.0462 (3)
C40.7508 (3)0.58725 (15)0.80240 (7)0.0253 (3)
H4A0.89030.57000.76890.030*
C50.6255 (3)0.49242 (13)0.83774 (7)0.0231 (3)
H50.67910.40930.82830.028*
C60.4174 (3)0.51517 (13)0.88817 (7)0.0200 (3)
N30.3089 (3)0.42103 (11)0.92557 (7)0.0243 (3)
H30.172 (4)0.4329 (16)0.9508 (10)0.029*
N40.3548 (3)0.29805 (11)0.90659 (7)0.0222 (2)
H40.518 (4)0.2710 (16)0.9126 (10)0.027*
C70.1401 (3)0.21961 (13)0.91490 (7)0.0222 (3)
O50.0894 (2)0.25786 (10)0.93114 (6)0.0291 (2)
C80.2055 (4)0.08501 (14)0.90370 (9)0.0310 (3)
H8A0.17470.03920.94730.047*
H8B0.39840.07640.88950.047*
H8C0.08610.05150.86690.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0161 (6)0.0247 (6)0.0211 (6)0.0007 (5)0.0003 (5)0.0036 (5)
N10.0187 (5)0.0254 (5)0.0276 (6)0.0018 (5)0.0007 (5)0.0083 (5)
O10.0243 (5)0.0272 (5)0.0380 (6)0.0046 (4)0.0021 (5)0.0092 (4)
O20.0334 (6)0.0304 (6)0.0408 (6)0.0044 (5)0.0178 (5)0.0053 (5)
C20.0218 (6)0.0241 (6)0.0242 (6)0.0029 (5)0.0050 (5)0.0001 (5)
C30.0229 (6)0.0303 (7)0.0203 (6)0.0070 (6)0.0027 (5)0.0046 (5)
N20.0323 (7)0.0384 (7)0.0262 (6)0.0125 (6)0.0069 (6)0.0095 (5)
O30.0475 (8)0.0320 (6)0.0489 (7)0.0124 (6)0.0052 (6)0.0114 (5)
O40.0430 (7)0.0581 (8)0.0374 (6)0.0177 (7)0.0111 (6)0.0105 (6)
C40.0203 (7)0.0352 (7)0.0203 (6)0.0025 (6)0.0020 (5)0.0001 (6)
C50.0205 (6)0.0267 (6)0.0221 (6)0.0012 (5)0.0029 (5)0.0024 (5)
C60.0161 (6)0.0238 (6)0.0200 (6)0.0007 (5)0.0006 (5)0.0014 (5)
N30.0210 (6)0.0217 (5)0.0301 (6)0.0006 (5)0.0084 (5)0.0019 (5)
N40.0154 (5)0.0200 (5)0.0312 (6)0.0011 (4)0.0006 (5)0.0004 (5)
C70.0182 (6)0.0256 (6)0.0228 (6)0.0011 (5)0.0022 (5)0.0029 (5)
O50.0159 (5)0.0339 (6)0.0375 (6)0.0002 (4)0.0012 (4)0.0046 (5)
C80.0308 (8)0.0235 (6)0.0389 (8)0.0011 (6)0.0008 (7)0.0019 (6)
Geometric parameters (Å, º) top
C1—C21.3915 (19)C5—C61.4178 (18)
C1—C61.4202 (19)C5—H50.9500
C1—N11.4508 (18)C6—N31.3477 (18)
N1—O11.2278 (16)N3—N41.3913 (17)
N1—O21.2354 (16)N3—H30.83 (2)
C2—C31.371 (2)N4—C71.3519 (18)
C2—H20.9500N4—H40.85 (2)
C3—C41.397 (2)C7—O51.2282 (17)
C3—N21.4543 (19)C7—C81.500 (2)
N2—O41.233 (2)C8—H8A0.9800
N2—O31.2355 (19)C8—H8B0.9800
C4—C51.367 (2)C8—H8C0.9800
C4—H4A0.9500
C2—C1—C6121.96 (13)C6—C5—H5119.2
C2—C1—N1116.25 (12)N3—C6—C5120.61 (13)
C6—C1—N1121.79 (12)N3—C6—C1122.76 (12)
O1—N1—O2122.79 (12)C5—C6—C1116.59 (12)
O1—N1—C1118.74 (12)C6—N3—N4121.01 (12)
O2—N1—C1118.47 (12)C6—N3—H3120.3 (12)
C3—C2—C1118.50 (13)N4—N3—H3115.2 (12)
C3—C2—H2120.8C7—N4—N3116.14 (12)
C1—C2—H2120.8C7—N4—H4119.2 (12)
C2—C3—C4121.83 (13)N3—N4—H4116.0 (13)
C2—C3—N2118.65 (14)O5—C7—N4121.37 (13)
C4—C3—N2119.49 (13)O5—C7—C8123.55 (14)
O4—N2—O3123.81 (14)N4—C7—C8115.07 (13)
O4—N2—C3117.56 (14)C7—C8—H8A109.5
O3—N2—C3118.63 (15)C7—C8—H8B109.5
C5—C4—C3119.47 (13)H8A—C8—H8B109.5
C5—C4—H4A120.3C7—C8—H8C109.5
C3—C4—H4A120.3H8A—C8—H8C109.5
C4—C5—C6121.60 (13)H8B—C8—H8C109.5
C4—C5—H5119.2
C2—C1—N1—O19.02 (18)N2—C3—C4—C5176.53 (13)
C6—C1—N1—O1170.04 (13)C3—C4—C5—C60.2 (2)
C2—C1—N1—O2171.10 (12)C4—C5—C6—N3175.76 (14)
C6—C1—N1—O29.84 (19)C4—C5—C6—C12.1 (2)
C6—C1—C2—C31.1 (2)C2—C1—C6—N3175.25 (13)
N1—C1—C2—C3177.94 (12)N1—C1—C6—N35.7 (2)
C1—C2—C3—C40.9 (2)C2—C1—C6—C52.53 (19)
C1—C2—C3—N2177.00 (13)N1—C1—C6—C5176.47 (12)
C2—C3—N2—O4179.13 (13)C5—C6—N3—N413.1 (2)
C4—C3—N2—O41.2 (2)C1—C6—N3—N4169.18 (13)
C2—C3—N2—O30.3 (2)C6—N3—N4—C7142.12 (14)
C4—C3—N2—O3178.27 (14)N3—N4—C7—O57.5 (2)
C2—C3—C4—C51.3 (2)N3—N4—C7—C8171.84 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.83 (2)2.001 (18)2.5942 (16)127.9 (16)
N4—H4···O5i0.85 (2)1.95 (2)2.7748 (16)164.0 (17)
C5—H5···O4ii0.952.443.249 (2)143
C8—H8A···O2iii0.982.583.269 (2)128
C8—H8C···O3iv0.982.573.527 (2)165
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC8H8N4O5
Mr240.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)4.8585 (4), 10.7703 (8), 19.1059 (14)
V3)999.76 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.57 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.927, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11843, 1794, 1616
Rint0.031
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.03
No. of reflections1794
No. of parameters161
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.83 (2)2.001 (18)2.5942 (16)127.9 (16)
N4—H4···O5i0.85 (2)1.95 (2)2.7748 (16)164.0 (17)
C5—H5···O4ii0.952.443.249 (2)143
C8—H8A···O2iii0.982.583.269 (2)128
C8—H8C···O3iv0.982.573.527 (2)165
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x1, y1, z.
 

Acknowledgements

The authors are greatful to the Pakistan Council of Scientific & Industrial Research Laboratories Complex, Lahore, for providing the necessary facilities.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationDomiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuo, H.-M. (2007). Acta Cryst. E63, o3123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 657–665.  CrossRef CAS Web of Science Google Scholar
First citationRudnicka, G. & Osmialowska, Z. (1979). Acta Pol. Pharm. 36, 411–419.  CAS Google Scholar
First citationSakamoto, H., Goto, H., Yokoshima, M., Dobashi, M., Ishikawa, J., Doi, K. & Otomo, M. (1993). Bull. Chem. Soc. Jpn, 66, 2907–2914.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull. 55, 1014–1017.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds