organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Iodo-3,3′-di­meth­oxy­biphen­yl

aHEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bChemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 26 June 2008; accepted 27 June 2008; online 5 July 2008)

Mol­ecules of the title compound, C14H13IO2, exhibit no ππ inter­actions. The dihedral angle between the two aromatic rings is 43.72 (9)°. The shortest inter­molecular I⋯O distance is 3.408 (2) Å, which is significantly less than the sum of the van der Waals radii for I and O (3.50 Å).

Related literature

For related literature, see: Litvinchuk et al. (2004[Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067-10075.]); Baudry et al. (2006[Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Func. Mater. 16, 169-179.]); Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286.]); Ali et al. (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]); Ibad et al. (2008[Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130-o1131.]); Baumeister et al. (2001[Baumeister, B., Sakai, N. & Matile, S. (2001). Org. Lett. 3, 4229-4232.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13IO2

  • Mr = 340.14

  • Monoclinic, P 21 /c

  • a = 11.932 (2) Å

  • b = 15.382 (3) Å

  • c = 6.9940 (14) Å

  • β = 90.68 (3)°

  • V = 1283.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 153 (2) K

  • 0.43 × 0.38 × 0.36 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.415, Tmax = 0.469 (expected range = 0.362–0.409)

  • 9179 measured reflections

  • 2337 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.09

  • 2337 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2006[Molecular Structure Corporation & Rigaku (2006). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembling molecules based on oligo(p-phenylene)s are receiving increased attention as building blocks for supramolecular structures, such as artficial ion channels (Litvinchuk et al., 2004; Baudry et al.,2 006). One can envision that incorporation of a conjugated macrocycle such as porphyrin into an oligo(p-phenylene)s, extends the cylindrical supramolecular organization capabilities of the oligo(pphenylene)s (Sisson et al., 2006) and can result in functionalized pores. The titled compound can be used as a precursor for the synthesis of oligo(p-phenylene)s (Baumeister et al., 2001). The I1—O1 intermolecular distance is 3.408 (2) Å which is significantly less than 3.50 Å, the sum of the van der Waals radii for I and O. Reported data (Ali et al., 2008) indicate that the oxygen atom of a methoxy group polarizes the electronic cloud surrounding the iodide causing a reduction in the I—O intermolecular distance. The phenyl rings are twisted by a dihedral angle of 43.72 (9)°, which is typical for biphenyl molecules (Ibad et al., 2008). The presence of a iodo group at only one phenyl ring least to a twist between the two rings, whereas the rings are coplanar when both phenyl rings bore a iodo group (Ali et al., 2008). The crystal packing diagram (Fig.2) shows that the molecules are interlinked by I—O interactions.

Related literature top

For related literature, see: Litvinchuk et al. (2004); Baudry et al. (2006); Sisson et al. (2006), Ali et al. (2008), Ibad et al. (2008), Baumeister et al. (2001).

Experimental top

5 g (10.7 mmol) of 4,4`-diiodo-3`-methoxy[1,1`-biphenyl]-3-yl-methyl ether was dissolved in 30 ml of THF in a 250 ml round bottom flask. The reaction mixture was stirred until a clear solution formed. Then a tert-butyl lithium solution (8.2 ml, 1.7 M in pentane 13.9 mmol) was added at 0 C. The reaction was monitored after an interval of 5 minutes through TLC.The reaction was stirred for thirty five minutes until a spot of 4-iodo-3,3`-dimethoxy-1,1`-biphenyl appeared on the TLC and was then quenched with 10 ml (1 N HCl) and extracted with 30 ml of chloroform three times. The crude reaction mixture was concentrated using a rotary evaporator. A super saturated solution of crude reaction mixture was prepared in chlorofrom and then methanol was added to this super-saturated solution of reaction mixture, two layers were formed which were separated and analysed by TLC (Hexane:Chloroform 1:1). The methanol layer contained 4-iodo-3,3'-dimethoxybiphenyl as the major product. The slow evaporation of methanol at room temperature yielded colorless crystals.

Refinement top

All H atoms were geometrically positioned and allowed to ride on the corresponding parent atom with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(Cmethyl) or 1.2Ueq(Caromatic), respectively. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2006); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2006); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective thermal elipsoid drawing (50% probability) of the molecule showing the atom labelling scheme.
[Figure 2] Fig. 2. A packing diagram along the a axis showing the short I - O contacts with dashed lines.
4-Iodo-3,3'-dimethoxybiphenyl top
Crystal data top
C14H13IO2F(000) = 664
Mr = 340.14Dx = 1.760 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.932 (2) ÅCell parameters from 4368 reflections
b = 15.382 (3) Åθ = 2.9–26.4°
c = 6.9940 (14) ŵ = 2.48 mm1
β = 90.68 (3)°T = 153 K
V = 1283.6 (4) Å3Chip, colorless
Z = 40.43 × 0.38 × 0.36 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2337 independent reflections
Radiation source: Sealed Tube2206 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.021
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1818
Tmin = 0.415, Tmax = 0.469l = 86
9179 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0234P)2 + 1.6489P]
where P = (Fo2 + 2Fc2)/3
2337 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C14H13IO2V = 1283.6 (4) Å3
Mr = 340.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.932 (2) ŵ = 2.48 mm1
b = 15.382 (3) ÅT = 153 K
c = 6.9940 (14) Å0.43 × 0.38 × 0.36 mm
β = 90.68 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2206 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.469Rint = 0.021
9179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.10Δρmax = 1.19 e Å3
2337 reflectionsΔρmin = 0.45 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.351251 (14)0.680339 (10)0.13178 (2)0.02636 (8)
C10.3045 (2)0.59482 (15)0.3506 (3)0.0207 (5)
C20.37606 (19)0.58357 (15)0.5087 (3)0.0187 (5)
C30.34448 (17)0.52906 (15)0.6519 (3)0.0158 (4)
H3A0.39260.52220.76180.019*
C40.2424 (2)0.48233 (15)0.6425 (3)0.0203 (5)
C50.1732 (2)0.49371 (17)0.4818 (4)0.0251 (5)
H5A0.10370.46250.47180.030*
C60.2044 (2)0.55002 (17)0.3361 (4)0.0250 (5)
H6A0.15660.55770.22610.030*
C70.2107 (2)0.42139 (15)0.7984 (3)0.0203 (5)
C80.2903 (2)0.36430 (16)0.8774 (3)0.0219 (5)
H8A0.36630.36520.83410.026*
C90.2583 (2)0.30671 (16)1.0183 (4)0.0233 (5)
H9A0.31290.26721.07070.028*
C100.1492 (2)0.30429 (16)1.0864 (4)0.0235 (5)
H10A0.12850.26381.18440.028*
C110.0710 (2)0.36164 (16)1.0095 (4)0.0226 (5)
C120.1018 (2)0.41935 (16)0.8648 (4)0.0222 (5)
H12A0.04680.45800.81070.027*
C130.5475 (2)0.62115 (17)0.6703 (4)0.0259 (5)
H13A0.61530.65290.64780.039*
H13B0.56510.56110.69240.039*
H13C0.51080.64460.78030.039*
C140.0733 (3)0.31310 (18)1.2189 (4)0.0340 (7)
H14A0.14890.32731.25250.051*
H14B0.02480.32221.32750.051*
H14C0.06960.25331.18020.051*
O10.47461 (14)0.62845 (11)0.5063 (2)0.0238 (4)
O20.03855 (15)0.36749 (13)1.0649 (3)0.0334 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02789 (11)0.02800 (11)0.02336 (11)0.00115 (6)0.00705 (7)0.00536 (6)
C10.0225 (12)0.0197 (11)0.0200 (12)0.0003 (9)0.0043 (9)0.0001 (9)
C20.0185 (11)0.0174 (11)0.0205 (11)0.0006 (9)0.0036 (9)0.0022 (9)
C30.0133 (10)0.0184 (11)0.0156 (11)0.0032 (8)0.0027 (8)0.0051 (8)
C40.0206 (11)0.0204 (11)0.0200 (12)0.0002 (9)0.0016 (9)0.0006 (9)
C50.0201 (12)0.0284 (13)0.0267 (13)0.0055 (10)0.0031 (10)0.0035 (10)
C60.0220 (12)0.0302 (13)0.0226 (12)0.0008 (10)0.0047 (10)0.0019 (10)
C70.0224 (11)0.0176 (11)0.0209 (12)0.0035 (9)0.0037 (9)0.0022 (9)
C80.0206 (12)0.0229 (12)0.0222 (12)0.0008 (9)0.0026 (9)0.0011 (10)
C90.0248 (13)0.0243 (12)0.0208 (12)0.0030 (10)0.0053 (10)0.0015 (10)
C100.0290 (13)0.0228 (12)0.0188 (12)0.0031 (10)0.0017 (10)0.0026 (10)
C110.0213 (12)0.0226 (12)0.0239 (12)0.0018 (9)0.0008 (10)0.0013 (10)
C120.0211 (12)0.0197 (11)0.0259 (13)0.0017 (9)0.0010 (9)0.0030 (10)
C130.0215 (12)0.0306 (13)0.0257 (13)0.0047 (10)0.0006 (10)0.0071 (11)
C140.0318 (15)0.0372 (16)0.0331 (16)0.0057 (11)0.0109 (12)0.0092 (12)
O10.0195 (8)0.0284 (9)0.0236 (9)0.0066 (7)0.0013 (7)0.0004 (7)
O20.0239 (9)0.0370 (11)0.0396 (11)0.0024 (8)0.0080 (8)0.0157 (9)
Geometric parameters (Å, º) top
I1—C12.098 (2)C9—C101.393 (4)
C1—C61.382 (3)C9—H9A0.9600
C1—C21.400 (3)C10—C111.388 (4)
C2—C31.363 (3)C10—H10A0.9600
C2—O11.364 (3)C11—O21.370 (3)
C3—C41.416 (3)C11—C121.399 (3)
C3—H3A0.9600C12—H12A0.9600
C4—C51.397 (3)C13—O11.436 (3)
C4—C71.490 (3)C13—H13A0.9599
C5—C61.391 (4)C13—H13B0.9599
C5—H5A0.9600C13—H13C0.9599
C6—H6A0.9600C14—O21.429 (3)
C7—C121.386 (3)C14—H14A0.9599
C7—C81.402 (3)C14—H14B0.9599
C8—C91.382 (4)C14—H14C0.9599
C8—H8A0.9600
I1···O1i3.408 (2)
C6—C1—C2121.0 (2)C8—C9—H9A119.1
C6—C1—I1119.76 (18)C10—C9—H9A119.1
C2—C1—I1119.25 (17)C11—C10—C9118.5 (2)
C3—C2—O1124.5 (2)C11—C10—H10A120.7
C3—C2—C1119.0 (2)C9—C10—H10A120.7
O1—C2—C1116.5 (2)O2—C11—C10124.8 (2)
C2—C3—C4121.6 (2)O2—C11—C12115.0 (2)
C2—C3—H3A119.2C10—C11—C12120.1 (2)
C4—C3—H3A119.2C7—C12—C11120.8 (2)
C5—C4—C3118.3 (2)C7—C12—H12A119.6
C5—C4—C7121.0 (2)C11—C12—H12A119.6
C3—C4—C7120.7 (2)O1—C13—H13A109.5
C6—C5—C4120.4 (2)O1—C13—H13B109.5
C6—C5—H5A119.8H13A—C13—H13B109.5
C4—C5—H5A119.8O1—C13—H13C109.5
C1—C6—C5119.7 (2)H13A—C13—H13C109.5
C1—C6—H6A120.1H13B—C13—H13C109.5
C5—C6—H6A120.1O2—C14—H14A109.5
C12—C7—C8119.1 (2)O2—C14—H14B109.5
C12—C7—C4120.4 (2)H14A—C14—H14B109.5
C8—C7—C4120.4 (2)O2—C14—H14C109.5
C9—C8—C7119.4 (2)H14A—C14—H14C109.5
C9—C8—H8A120.3H14B—C14—H14C109.5
C7—C8—H8A120.3C2—O1—C13117.71 (19)
C8—C9—C10121.9 (2)C11—O2—C14117.4 (2)
C6—C1—C2—C31.6 (4)C3—C4—C7—C843.5 (3)
I1—C1—C2—C3178.93 (16)C12—C7—C8—C90.6 (4)
C6—C1—C2—O1177.8 (2)C4—C7—C8—C9178.3 (2)
I1—C1—C2—O11.7 (3)C7—C8—C9—C100.8 (4)
O1—C2—C3—C4178.0 (2)C8—C9—C10—C110.0 (4)
C1—C2—C3—C41.3 (3)C9—C10—C11—O2178.8 (2)
C2—C3—C4—C50.4 (3)C9—C10—C11—C121.0 (4)
C2—C3—C4—C7178.5 (2)C8—C7—C12—C110.4 (4)
C3—C4—C5—C60.4 (4)C4—C7—C12—C11179.2 (2)
C7—C4—C5—C6179.2 (2)O2—C11—C12—C7178.7 (2)
C2—C1—C6—C50.9 (4)C10—C11—C12—C71.2 (4)
I1—C1—C6—C5179.64 (19)C3—C2—O1—C133.3 (3)
C4—C5—C6—C10.1 (4)C1—C2—O1—C13177.3 (2)
C5—C4—C7—C1243.6 (3)C10—C11—O2—C142.9 (4)
C3—C4—C7—C12137.6 (2)C12—C11—O2—C14176.9 (2)
C5—C4—C7—C8135.3 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13IO2
Mr340.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.932 (2), 15.382 (3), 6.9940 (14)
β (°) 90.68 (3)
V3)1283.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.43 × 0.38 × 0.36
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.415, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
9179, 2337, 2206
Rint0.021
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.10
No. of reflections2337
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.45

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support.

References

First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Func. Mater. 16, 169–179.  Web of Science CrossRef CAS Google Scholar
First citationBaumeister, B., Sakai, N. & Matile, S. (2001). Org. Lett. 3, 4229–4232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIbad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLitvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067–10075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2006). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds