organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(n-Propyl­imino­meth­yl)-1,1′-bi-2-naphthol ethanol solvate

aInstitute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: sculiruixiang@163.com

(Received 28 June 2008; accepted 3 July 2008; online 9 July 2008)

In the title compound, C24H21NO2·C2H6O, the dihedral angle between the two aromatic ring systems is 87.00 (6)°. There is an intra­molecular O—H⋯N hydrogen bond, which forms a six-membered ring. Inter­molecular O—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For background on the application of salen complexes to asymmetric catalysis, see: Pu (1998[Pu, L. (1998). Chem. Rev. 98, 2405-2494.]). For synthesis, see: Chin et al. (2004[Chin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591-2593.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21NO2·C2H6O

  • Mr = 401.49

  • Triclinic, [P \overline 1]

  • a = 10.356 (5) Å

  • b = 10.702 (4) Å

  • c = 11.681 (6) Å

  • α = 94.74 (3)°

  • β = 113.53 (4)°

  • γ = 110.21 (3)°

  • V = 1076.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.42 × 0.40 × 0.38 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3981 measured reflections

  • 3973 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.002

  • 3 standard reflections every 300 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 0.94

  • 3973 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.92 2.738 (2) 175
O2—H2⋯N1 0.82 1.85 2.590 (3) 149
O3—H3⋯O2 0.82 2.19 2.939 (3) 151
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Binol and its derivatives have been largely used in asymmetric catalysis and chiral recognition (Pu, 1998). In this paper we present X-ray crystallographic analysis of the title compound .

As shown in Fig. 1, an intramolecular O—H···N hydrogen bond between the hydroxy and the imino moieties forms a ring.

In the crystal, the molecules are connected by O—H···O hydrogen bonds (Fig. 2).

Related literature top

For background on the application of salen complexes to asymmetric catalysis, see: Pu (1998). For synthesis, see: Chin et al. (2004).

Experimental top

The salen ligand, 3-(n-propyliminomethyl)-1,1'-binaphthol was prepared by condensation of 3-carboxaldehyde-1,1'-binaphthol with n-propyamine, which was prepared by reported methods (Chin et al., 2004). Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol /methylene chloride (1:5) solution of the compound.

Refinement top

All H atoms were placed in calculated positions and refined using a riding-model with C-H ranging from 0.93 to 0.97Å and O-H = 0.82Å and U(H)= 1.2Ueq(C,O) or U(H)= 1.5Ueq(Cmethyl). The methyl and hydroxyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal structure of the title compound.
3-(n-Propyliminomethyl)-1,1'-bi-2-naphthol ethanol solvate top
Crystal data top
C24H21NO2·C2H6OZ = 2
Mr = 401.49F(000) = 428
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.356 (5) ÅCell parameters from 37 reflections
b = 10.702 (4) Åθ = 4.6–9.7°
c = 11.681 (6) ŵ = 0.08 mm1
α = 94.74 (3)°T = 292 K
β = 113.53 (4)°Block, red
γ = 110.21 (3)°0.42 × 0.40 × 0.38 mm
V = 1076.7 (10) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.002
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 2.0°
Graphite monochromatorh = 1211
ω/2–θ scansk = 412
3981 measured reflectionsl = 1414
3973 independent reflections3 standard reflections every 300 reflections
1867 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3973 reflectionsΔρmax = 0.20 e Å3
276 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (3)
Crystal data top
C24H21NO2·C2H6Oγ = 110.21 (3)°
Mr = 401.49V = 1076.7 (10) Å3
Triclinic, P1Z = 2
a = 10.356 (5) ÅMo Kα radiation
b = 10.702 (4) ŵ = 0.08 mm1
c = 11.681 (6) ÅT = 292 K
α = 94.74 (3)°0.42 × 0.40 × 0.38 mm
β = 113.53 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.002
3981 measured reflections3 standard reflections every 300 reflections
3973 independent reflections intensity decay: 2.1%
1867 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.94Δρmax = 0.20 e Å3
3973 reflectionsΔρmin = 0.16 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05783 (17)0.49721 (14)0.36028 (17)0.0594 (5)
H11.01170.54110.37320.071*
O21.23674 (17)0.25319 (17)0.46653 (16)0.0542 (5)
H21.30920.24260.52130.065*
O31.0938 (2)0.34869 (17)0.60697 (19)0.0706 (6)
H31.11960.33810.55030.085*
N11.5128 (2)0.2638 (2)0.5883 (2)0.0577 (6)
C10.9549 (2)0.3634 (2)0.2954 (2)0.0422 (6)
C20.8018 (3)0.3178 (2)0.2763 (2)0.0499 (6)
H2A0.76940.37910.30550.060*
C30.7007 (3)0.1847 (2)0.2154 (2)0.0530 (7)
H3A0.59970.15530.20390.064*
C40.7464 (2)0.0903 (2)0.1693 (2)0.0438 (6)
C50.6427 (3)0.0497 (2)0.1053 (2)0.0574 (7)
H50.54180.08110.09460.069*
C60.6889 (3)0.1383 (2)0.0595 (2)0.0631 (8)
H60.61940.22940.01690.076*
C70.8399 (3)0.0930 (2)0.0762 (2)0.0571 (7)
H70.87050.15420.04440.069*
C80.9434 (3)0.0399 (2)0.1384 (2)0.0470 (6)
H81.04390.06810.14880.056*
C90.9004 (2)0.1357 (2)0.1875 (2)0.0379 (5)
C101.0073 (2)0.2762 (2)0.25333 (19)0.0365 (5)
C111.1704 (2)0.3247 (2)0.2740 (2)0.0375 (5)
C121.2792 (2)0.3084 (2)0.3796 (2)0.0408 (6)
C131.4355 (2)0.3485 (2)0.4005 (2)0.0445 (6)
C141.4773 (3)0.4108 (2)0.3151 (2)0.0511 (7)
H141.57960.44070.33020.061*
C151.3714 (3)0.4312 (2)0.2059 (2)0.0461 (6)
C161.4142 (3)0.4958 (2)0.1180 (3)0.0625 (7)
H161.51730.53100.13450.075*
C171.3077 (4)0.5073 (3)0.0103 (3)0.0691 (8)
H171.33820.55100.04600.083*
C181.1518 (3)0.4538 (3)0.0169 (3)0.0625 (7)
H181.07850.45830.09330.075*
C191.1064 (3)0.3949 (2)0.0678 (2)0.0490 (6)
H191.00270.36190.04930.059*
C201.2138 (2)0.3833 (2)0.1827 (2)0.0418 (6)
C211.5484 (3)0.3257 (2)0.5097 (3)0.0539 (7)
H211.65010.35740.52260.065*
C221.6320 (3)0.2426 (2)0.6952 (2)0.0657 (8)
H22A1.64280.28690.77640.079*
H22B1.73030.28550.69370.079*
C231.5938 (3)0.0939 (3)0.6875 (2)0.0654 (8)
H23A1.58850.05100.60830.078*
H23B1.49250.05020.68370.078*
C241.7112 (3)0.0693 (3)0.8015 (3)0.0837 (9)
H24A1.81230.11470.80740.126*
H24B1.68420.02780.78950.126*
H24C1.71150.10550.87960.126*
C251.0527 (4)0.2247 (3)0.6459 (3)0.0819 (9)
H25A1.04380.24280.72460.098*
H25B1.13410.19270.66470.098*
C260.9048 (4)0.1156 (3)0.5454 (3)0.1148 (13)
H26A0.82270.14460.53050.172*
H26B0.88340.03250.57390.172*
H26C0.91230.09880.46680.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0426 (10)0.0422 (9)0.0837 (13)0.0137 (8)0.0270 (9)0.0041 (9)
O20.0418 (10)0.0671 (10)0.0566 (12)0.0264 (9)0.0201 (9)0.0260 (9)
O30.0925 (15)0.0585 (11)0.0825 (15)0.0393 (11)0.0532 (12)0.0186 (10)
N10.0453 (13)0.0549 (13)0.0607 (15)0.0258 (11)0.0092 (11)0.0122 (11)
C10.0345 (13)0.0363 (12)0.0501 (15)0.0130 (11)0.0161 (11)0.0073 (11)
C20.0412 (14)0.0496 (15)0.0622 (17)0.0217 (12)0.0250 (12)0.0099 (12)
C30.0330 (13)0.0586 (16)0.0629 (17)0.0177 (12)0.0194 (12)0.0116 (13)
C40.0338 (13)0.0431 (13)0.0457 (15)0.0125 (11)0.0132 (11)0.0096 (11)
C50.0389 (14)0.0526 (15)0.0619 (17)0.0091 (13)0.0153 (13)0.0083 (13)
C60.0558 (18)0.0429 (15)0.0629 (19)0.0072 (14)0.0147 (14)0.0022 (13)
C70.0617 (18)0.0452 (15)0.0572 (17)0.0232 (13)0.0211 (14)0.0044 (12)
C80.0443 (14)0.0472 (14)0.0486 (15)0.0222 (12)0.0182 (12)0.0090 (12)
C90.0346 (13)0.0406 (12)0.0358 (13)0.0162 (10)0.0128 (10)0.0107 (10)
C100.0290 (12)0.0390 (12)0.0369 (13)0.0137 (10)0.0112 (10)0.0090 (10)
C110.0322 (12)0.0351 (12)0.0433 (14)0.0149 (10)0.0157 (11)0.0056 (10)
C120.0390 (13)0.0346 (12)0.0485 (15)0.0140 (10)0.0213 (12)0.0085 (11)
C130.0343 (13)0.0403 (13)0.0551 (16)0.0180 (11)0.0162 (12)0.0054 (11)
C140.0366 (14)0.0458 (14)0.0752 (19)0.0181 (12)0.0298 (14)0.0092 (13)
C150.0461 (15)0.0442 (13)0.0601 (17)0.0235 (12)0.0313 (13)0.0133 (12)
C160.0649 (18)0.0616 (17)0.086 (2)0.0319 (15)0.0522 (17)0.0241 (15)
C170.092 (2)0.0770 (19)0.080 (2)0.0509 (18)0.0620 (19)0.0361 (16)
C180.085 (2)0.0717 (18)0.0572 (18)0.0507 (17)0.0407 (16)0.0227 (15)
C190.0524 (15)0.0507 (14)0.0504 (16)0.0271 (12)0.0246 (13)0.0130 (12)
C200.0439 (14)0.0368 (12)0.0488 (15)0.0199 (11)0.0232 (12)0.0060 (11)
C210.0342 (14)0.0452 (15)0.0705 (19)0.0178 (12)0.0133 (13)0.0060 (13)
C220.0535 (16)0.0645 (17)0.0633 (18)0.0300 (14)0.0085 (14)0.0109 (14)
C230.0583 (17)0.0684 (17)0.0583 (17)0.0280 (14)0.0137 (14)0.0221 (13)
C240.0665 (19)0.096 (2)0.088 (2)0.0434 (17)0.0230 (17)0.0439 (18)
C250.123 (3)0.077 (2)0.074 (2)0.056 (2)0.056 (2)0.0300 (17)
C260.122 (3)0.078 (2)0.123 (3)0.015 (2)0.059 (3)0.025 (2)
Geometric parameters (Å, º) top
O1—C11.372 (2)C13—C211.453 (3)
O1—H10.8200C14—C151.404 (3)
O2—C121.360 (3)C14—H140.9300
O2—H20.8200C15—C161.414 (3)
O3—C251.419 (3)C15—C201.430 (3)
O3—H30.8200C16—C171.350 (4)
N1—C211.272 (3)C16—H160.9300
N1—C221.464 (3)C17—C181.399 (4)
C1—C101.376 (3)C17—H170.9300
C1—C21.403 (3)C18—C191.367 (3)
C2—C31.356 (3)C18—H180.9300
C2—H2A0.9300C19—C201.409 (3)
C3—C41.406 (3)C19—H190.9300
C3—H3A0.9300C21—H210.9300
C4—C91.415 (3)C22—C231.486 (3)
C4—C51.421 (3)C22—H22A0.9700
C5—C61.359 (3)C22—H22B0.9700
C5—H50.9300C23—C241.519 (3)
C6—C71.391 (3)C23—H23A0.9700
C6—H60.9300C23—H23B0.9700
C7—C81.362 (3)C24—H24A0.9600
C7—H70.9300C24—H24B0.9600
C8—C91.413 (3)C24—H24C0.9600
C8—H80.9300C25—C261.480 (4)
C9—C101.435 (3)C25—H25A0.9700
C10—C111.493 (3)C25—H25B0.9700
C11—C121.372 (3)C26—H26A0.9600
C11—C201.424 (3)C26—H26B0.9600
C12—C131.433 (3)C26—H26C0.9600
C13—C141.371 (3)
C1—O1—H1109.5C17—C16—C15121.1 (3)
C12—O2—H2109.5C17—C16—H16119.5
C25—O3—H3109.5C15—C16—H16119.5
C21—N1—C22119.3 (2)C16—C17—C18120.3 (3)
O1—C1—C10118.24 (19)C16—C17—H17119.9
O1—C1—C2119.98 (19)C18—C17—H17119.9
C10—C1—C2121.76 (19)C19—C18—C17120.5 (3)
C3—C2—C1120.2 (2)C19—C18—H18119.8
C3—C2—H2A119.9C17—C18—H18119.8
C1—C2—H2A119.9C18—C19—C20121.2 (2)
C2—C3—C4121.0 (2)C18—C19—H19119.4
C2—C3—H3A119.5C20—C19—H19119.4
C4—C3—H3A119.5C19—C20—C11122.5 (2)
C3—C4—C9119.16 (19)C19—C20—C15117.8 (2)
C3—C4—C5122.0 (2)C11—C20—C15119.7 (2)
C9—C4—C5118.9 (2)N1—C21—C13122.2 (2)
C6—C5—C4120.8 (2)N1—C21—H21118.9
C6—C5—H5119.6C13—C21—H21118.9
C4—C5—H5119.6N1—C22—C23111.9 (2)
C5—C6—C7120.2 (2)N1—C22—H22A109.2
C5—C6—H6119.9C23—C22—H22A109.2
C7—C6—H6119.9N1—C22—H22B109.2
C8—C7—C6120.8 (2)C23—C22—H22B109.2
C8—C7—H7119.6H22A—C22—H22B107.9
C6—C7—H7119.6C22—C23—C24112.9 (2)
C7—C8—C9121.0 (2)C22—C23—H23A109.0
C7—C8—H8119.5C24—C23—H23A109.0
C9—C8—H8119.5C22—C23—H23B109.0
C8—C9—C4118.3 (2)C24—C23—H23B109.0
C8—C9—C10122.0 (2)H23A—C23—H23B107.8
C4—C9—C10119.63 (19)C23—C24—H24A109.5
C1—C10—C9118.25 (19)C23—C24—H24B109.5
C1—C10—C11121.72 (18)H24A—C24—H24B109.5
C9—C10—C11120.02 (18)C23—C24—H24C109.5
C12—C11—C20119.3 (2)H24A—C24—H24C109.5
C12—C11—C10119.8 (2)H24B—C24—H24C109.5
C20—C11—C10120.84 (19)O3—C25—C26112.0 (3)
O2—C12—C11118.8 (2)O3—C25—H25A109.2
O2—C12—C13119.5 (2)C26—C25—H25A109.2
C11—C12—C13121.7 (2)O3—C25—H25B109.2
C14—C13—C12118.3 (2)C26—C25—H25B109.2
C14—C13—C21120.4 (2)H25A—C25—H25B107.9
C12—C13—C21121.4 (2)C25—C26—H26A109.5
C13—C14—C15122.5 (2)C25—C26—H26B109.5
C13—C14—H14118.7H26A—C26—H26B109.5
C15—C14—H14118.7C25—C26—H26C109.5
C14—C15—C16122.7 (2)H26A—C26—H26C109.5
C14—C15—C20118.3 (2)H26B—C26—H26C109.5
C16—C15—C20119.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.922.738 (2)175
O2—H2···N10.821.852.590 (3)149
O3—H3···O20.822.192.939 (3)151
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H21NO2·C2H6O
Mr401.49
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)10.356 (5), 10.702 (4), 11.681 (6)
α, β, γ (°)94.74 (3), 113.53 (4), 110.21 (3)
V3)1076.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.40 × 0.38
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3981, 3973, 1867
Rint0.002
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 0.94
No. of reflections3973
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.922.738 (2)175.3
O2—H2···N10.821.852.590 (3)149.1
O3—H3···O20.822.192.939 (3)150.9
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationChin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591–2593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationPu, L. (1998). Chem. Rev. 98, 2405–2494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds