organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benzene­sulfonamido)pyridinium tri­fluoro­acetate

aSchool of Chemical & Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China, and cHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China
*Correspondence e-mail: jansenlee1103@yahoo.com.cn

(Received 4 July 2008; accepted 10 July 2008; online 16 July 2008)

In the title compound, C11H10N3O4S+·C2F3O2, the benzene ring makes an angle of 87.3 (2)° with the pyridinium ring. The nitro group is essentially coplanar with the benzene ring. The F atoms of the CF3 group are disordered over two positions with almost equal occupancy [0.531 (12)/0.469 (12)]. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For studies of supra­molecular chemistry involving pyridinium rings, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350-352.]). For 4-nitro-N-(4-pyrid­yl)benzene­sulfonamide, see: Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). For its salt form, see: Zhou et al. (2008[Zhou, B., Zheng, P.-W., Liu, K.-Y. & Cheng, D. (2008). Acta Cryst. E64, o254.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N3O4S+·C2F3O2

  • Mr = 393.30

  • Monoclinic, P 21 /c

  • a = 5.662 (2) Å

  • b = 17.497 (7) Å

  • c = 16.173 (6) Å

  • β = 96.595 (7)°

  • V = 1591.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 (2) K

  • 0.10 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.989

  • 7696 measured reflections

  • 2763 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.150

  • S = 1.05

  • 2763 reflections

  • 269 parameters

  • 43 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6 0.899 (11) 1.812 (14) 2.706 (5) 173 (5)
N2—H2A⋯O6i 0.86 (5) 2.00 (5) 2.858 (5) 176 (5)
C2—H2⋯O5i 0.93 2.52 3.343 (6) 148
C3—H3⋯O1ii 0.93 2.56 3.406 (6) 151
C8—H8⋯O5iii 0.93 2.48 3.204 (6) 135
C10—H10⋯O3iv 0.93 2.39 3.184 (6) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pyridinium salts have been widely used in the construction of supramolecular architectures. As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), the structure of the title compound was determined by X-ray diffraction.

In the cations of the title compound the short C—N distance is indicative of the slight conjugation of the sulphonamide N with the pyridinium ring. The benzene ring forms an angle of 87.3 (2)° with the pyridinium ring. The nitro group is essentially coplanar with the benzene ring

The crystal packing is stabilized by N—H···O and C—H···O hydrogen bonds.

Related literature top

For studies of supramolecular

chemistry involving pyridinium rings, see: Li et al. (2007). For 4-nitro-N-(4-pyridyl)benzenesulfonamide, see: Yu & Li (2007). For its salt form, see: Zhou et al. (2008).

Experimental top

4-Nitro-(N-pyridyl)benzenesulfonamide was prepared by the method of Yu & Li (2007). Crystals were obtained by evaporation of a trifluoroacetic acid solution of the amide.

Refinement top

The N-bound H atoms were located in a difference map and their coordinates were refined. The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2 Ueq(C and N) was applied. The N1—H1A distance was restrained at 0.90 (1) Å and C—F distances to 1.36 (1) Å. The instruction ISOR (tolerance 0.01) was applied to restrain the displacement ellipsoids of all F atoms to an isotropic bahaviour. The CF3 group was disordered with the occupancy of 0.531 (12):0.469 (12).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). The dashed line indicates a hydrogen bond. Only the major component of the disordered CF3 group is shown.
4-(4-Nitrobenzenesulfonamido)pyridinium trifluoroacetate top
Crystal data top
C11H10N3O4S+·C2F3O2F(000) = 800
Mr = 393.30Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1671 reflections
a = 5.662 (2) Åθ = 2.5–24.6°
b = 17.497 (7) ŵ = 0.28 mm1
c = 16.173 (6) ÅT = 294 K
β = 96.595 (7)°Block, colourless
V = 1591.5 (11) Å30.10 × 0.04 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube1596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.973, Tmax = 0.989k = 1220
7696 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.054P)2 + 1.2648P]
where P = (Fo2 + 2Fc2)/3
2763 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.40 e Å3
43 restraintsΔρmin = 0.33 e Å3
Crystal data top
C11H10N3O4S+·C2F3O2V = 1591.5 (11) Å3
Mr = 393.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.662 (2) ŵ = 0.28 mm1
b = 17.497 (7) ÅT = 294 K
c = 16.173 (6) Å0.10 × 0.04 × 0.04 mm
β = 96.595 (7)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2763 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1596 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.067
7696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06543 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
2763 reflectionsΔρmin = 0.33 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.1485 (2)0.29446 (8)0.83034 (7)0.0340 (4)
O11.1501 (6)0.2461 (2)0.90245 (19)0.0469 (10)
O21.3599 (5)0.3060 (2)0.7915 (2)0.0466 (10)
O30.6073 (7)0.6017 (2)0.9593 (2)0.0536 (11)
O40.8837 (7)0.6574 (2)0.9023 (3)0.0648 (12)
N10.7475 (8)0.3207 (3)0.5179 (2)0.0418 (11)
H1A0.723 (8)0.333 (3)0.4637 (11)0.050*
N20.9372 (7)0.2588 (3)0.7627 (2)0.0321 (10)
H2A0.853 (8)0.229 (3)0.790 (3)0.039*
N30.7809 (8)0.6001 (3)0.9208 (2)0.0376 (11)
C10.8800 (8)0.2833 (3)0.6816 (3)0.0302 (12)
C20.6688 (8)0.2553 (3)0.6379 (3)0.0343 (12)
H20.56920.22400.66480.041*
C30.6093 (9)0.2737 (3)0.5565 (3)0.0365 (13)
H30.47180.25360.52760.044*
C40.9464 (10)0.3510 (3)0.5585 (3)0.0440 (14)
H41.03850.38390.53040.053*
C51.0155 (9)0.3343 (3)0.6397 (3)0.0388 (13)
H51.15150.35660.66730.047*
C61.0399 (8)0.3856 (3)0.8545 (3)0.0290 (11)
C71.1511 (9)0.4521 (3)0.8325 (3)0.0392 (13)
H71.28370.44900.80360.047*
C81.0671 (9)0.5226 (3)0.8528 (3)0.0392 (13)
H81.14090.56730.83820.047*
C90.8688 (8)0.5251 (3)0.8959 (3)0.0297 (11)
C100.7523 (8)0.4602 (3)0.9186 (3)0.0358 (12)
H100.61860.46390.94680.043*
C110.8397 (8)0.3893 (3)0.8981 (3)0.0366 (13)
H110.76630.34470.91320.044*
C120.5532 (9)0.3961 (3)0.3109 (3)0.0337 (12)
O50.5106 (7)0.4020 (2)0.2352 (2)0.0588 (12)
O60.6749 (6)0.3465 (2)0.35187 (18)0.0418 (9)
C130.4492 (13)0.4576 (4)0.3613 (4)0.075 (2)
F10.320 (2)0.4376 (10)0.4198 (8)0.117 (6)0.531 (12)
F20.367 (2)0.5185 (5)0.3176 (6)0.101 (4)0.531 (12)
F30.6434 (17)0.4927 (6)0.4089 (7)0.115 (5)0.531 (12)
F1'0.2000 (16)0.4600 (8)0.3372 (7)0.110 (5)0.469 (12)
F2'0.512 (3)0.5285 (6)0.3520 (10)0.116 (5)0.469 (12)
F3'0.430 (2)0.4372 (9)0.4392 (5)0.080 (4)0.469 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0332 (7)0.0405 (8)0.0257 (6)0.0051 (7)0.0073 (5)0.0002 (6)
O10.059 (2)0.046 (2)0.0306 (19)0.0025 (19)0.0152 (17)0.0062 (17)
O20.0287 (18)0.058 (3)0.052 (2)0.0050 (18)0.0021 (16)0.010 (2)
O30.060 (2)0.050 (3)0.055 (2)0.007 (2)0.023 (2)0.002 (2)
O40.073 (3)0.033 (2)0.091 (3)0.016 (2)0.020 (2)0.006 (2)
N10.058 (3)0.047 (3)0.020 (2)0.004 (2)0.001 (2)0.004 (2)
N20.037 (2)0.037 (3)0.022 (2)0.006 (2)0.0007 (17)0.0050 (18)
N30.044 (3)0.038 (3)0.030 (2)0.000 (2)0.004 (2)0.002 (2)
C10.040 (3)0.029 (3)0.021 (2)0.002 (2)0.003 (2)0.004 (2)
C20.037 (3)0.038 (3)0.027 (2)0.004 (3)0.004 (2)0.002 (2)
C30.044 (3)0.041 (3)0.024 (2)0.003 (3)0.001 (2)0.001 (2)
C40.055 (3)0.044 (4)0.035 (3)0.006 (3)0.012 (3)0.007 (3)
C50.044 (3)0.047 (4)0.025 (3)0.005 (3)0.000 (2)0.002 (2)
C60.028 (3)0.033 (3)0.024 (2)0.001 (2)0.005 (2)0.001 (2)
C70.033 (3)0.048 (4)0.037 (3)0.004 (3)0.009 (2)0.005 (3)
C80.044 (3)0.042 (4)0.033 (3)0.015 (3)0.011 (2)0.002 (3)
C90.033 (3)0.033 (3)0.023 (2)0.002 (2)0.002 (2)0.000 (2)
C100.028 (3)0.042 (4)0.037 (3)0.005 (3)0.007 (2)0.001 (3)
C110.039 (3)0.033 (3)0.038 (3)0.010 (3)0.003 (2)0.005 (3)
C120.044 (3)0.034 (3)0.024 (3)0.004 (3)0.006 (2)0.000 (2)
O50.083 (3)0.067 (3)0.026 (2)0.015 (2)0.0016 (19)0.0039 (19)
O60.056 (2)0.045 (2)0.0227 (18)0.0032 (19)0.0004 (16)0.0023 (17)
C130.107 (6)0.071 (6)0.045 (4)0.018 (5)0.006 (4)0.001 (4)
F10.110 (9)0.136 (9)0.117 (9)0.002 (7)0.059 (7)0.026 (7)
F20.142 (8)0.060 (6)0.098 (6)0.050 (6)0.005 (6)0.013 (5)
F30.138 (8)0.092 (7)0.114 (7)0.003 (6)0.008 (6)0.076 (6)
F1'0.090 (7)0.138 (9)0.105 (7)0.044 (6)0.022 (5)0.024 (6)
F2'0.131 (9)0.079 (8)0.142 (9)0.010 (7)0.031 (7)0.018 (7)
F3'0.093 (8)0.097 (7)0.053 (5)0.027 (7)0.023 (5)0.026 (5)
Geometric parameters (Å, º) top
S1—O21.428 (3)C6—C71.388 (7)
S1—O11.440 (3)C6—C111.404 (6)
S1—N21.648 (4)C7—C81.376 (7)
S1—C61.769 (5)C7—H70.9300
O3—N31.222 (5)C8—C91.388 (6)
O4—N31.213 (5)C8—H80.9300
N1—C31.338 (6)C9—C101.384 (6)
N1—C41.345 (6)C10—C111.389 (7)
N1—H1A0.899 (11)C10—H100.9300
N2—C11.382 (5)C11—H110.9300
N2—H2A0.86 (5)C12—O51.225 (5)
N3—C91.476 (6)C12—O61.250 (5)
C1—C51.401 (7)C12—C131.511 (8)
C1—C21.405 (6)C13—F2'1.303 (9)
C2—C31.359 (6)C13—F11.309 (9)
C2—H20.9300C13—F3'1.326 (9)
C3—H30.9300C13—F21.333 (8)
C4—C51.359 (7)C13—F31.408 (8)
C4—H40.9300C13—F1'1.420 (8)
C5—H50.9300
O2—S1—O1120.8 (2)C7—C8—C9118.0 (5)
O2—S1—N2110.0 (2)C7—C8—H8121.0
O1—S1—N2104.6 (2)C9—C8—H8121.0
O2—S1—C6107.4 (2)C10—C9—C8123.0 (5)
O1—S1—C6108.7 (2)C10—C9—N3118.1 (4)
N2—S1—C6104.1 (2)C8—C9—N3118.8 (5)
C3—N1—C4121.0 (4)C9—C10—C11118.4 (4)
C3—N1—H1A125 (3)C9—C10—H10120.8
C4—N1—H1A114 (3)C11—C10—H10120.8
C1—N2—S1125.8 (4)C10—C11—C6119.4 (5)
C1—N2—H2A126 (3)C10—C11—H11120.3
S1—N2—H2A107 (3)C6—C11—H11120.3
O4—N3—O3122.9 (5)O5—C12—O6128.5 (5)
O4—N3—C9118.7 (4)O5—C12—C13115.8 (5)
O3—N3—C9118.4 (4)O6—C12—C13115.7 (4)
N2—C1—C5125.1 (4)F2'—C13—F1121.4 (11)
N2—C1—C2117.6 (4)F2'—C13—F3'114.8 (11)
C5—C1—C2117.4 (4)F1—C13—F3'29.3 (8)
C3—C2—C1120.5 (5)F2'—C13—F242.4 (7)
C3—C2—H2119.8F1—C13—F2114.0 (10)
C1—C2—H2119.8F3'—C13—F2131.1 (9)
N1—C3—C2120.3 (5)F2'—C13—F356.1 (8)
N1—C3—H3119.9F1—C13—F3100.8 (9)
C2—C3—H3119.9F3'—C13—F375.0 (8)
N1—C4—C5121.3 (5)F2—C13—F398.4 (9)
N1—C4—H4119.4F2'—C13—F1'102.5 (10)
C5—C4—H4119.4F1—C13—F1'65.5 (8)
C4—C5—C1119.4 (5)F3'—C13—F1'94.7 (9)
C4—C5—H5120.3F2—C13—F1'63.6 (7)
C1—C5—H5120.3F3—C13—F1'145.7 (8)
C7—C6—C11120.5 (5)F2'—C13—C12119.2 (8)
C7—C6—S1121.3 (4)F1—C13—C12119.0 (9)
C11—C6—S1118.2 (4)F3'—C13—C12113.6 (8)
C8—C7—C6120.7 (5)F2—C13—C12114.7 (6)
C8—C7—H7119.7F3—C13—C12106.1 (6)
C6—C7—H7119.7F1'—C13—C12108.0 (6)
O2—S1—N2—C144.4 (5)C7—C8—C9—N3178.0 (4)
O1—S1—N2—C1175.5 (4)O4—N3—C9—C10178.9 (4)
C6—S1—N2—C170.4 (4)O3—N3—C9—C101.0 (6)
S1—N2—C1—C510.6 (7)O4—N3—C9—C80.5 (6)
S1—N2—C1—C2169.1 (4)O3—N3—C9—C8179.4 (4)
N2—C1—C2—C3176.2 (5)C8—C9—C10—C110.8 (7)
C5—C1—C2—C34.1 (7)N3—C9—C10—C11177.6 (4)
C4—N1—C3—C20.4 (8)C9—C10—C11—C60.8 (7)
C1—C2—C3—N12.1 (8)C7—C6—C11—C100.5 (7)
C3—N1—C4—C50.7 (8)S1—C6—C11—C10179.4 (4)
N1—C4—C5—C11.5 (8)O5—C12—C13—F2'60.9 (12)
N2—C1—C5—C4176.6 (5)O6—C12—C13—F2'118.0 (11)
C2—C1—C5—C43.8 (7)O5—C12—C13—F1126.9 (10)
O2—S1—C6—C72.8 (4)O6—C12—C13—F154.3 (12)
O1—S1—C6—C7135.0 (4)O5—C12—C13—F3'159.0 (9)
N2—S1—C6—C7113.9 (4)O6—C12—C13—F3'22.1 (11)
O2—S1—C6—C11176.1 (3)O5—C12—C13—F213.2 (11)
O1—S1—C6—C1143.8 (4)O6—C12—C13—F2165.7 (9)
N2—S1—C6—C1167.2 (4)O5—C12—C13—F3120.7 (7)
C11—C6—C7—C80.1 (7)O6—C12—C13—F358.2 (8)
S1—C6—C7—C8178.9 (4)O5—C12—C13—F1'55.4 (9)
C6—C7—C8—C90.0 (7)O6—C12—C13—F1'125.8 (8)
C7—C8—C9—C100.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.90 (1)1.81 (1)2.706 (5)173 (5)
N2—H2A···O6i0.86 (5)2.00 (5)2.858 (5)176 (5)
C2—H2···O5i0.932.523.343 (6)148
C3—H3···O1ii0.932.563.406 (6)151
C8—H8···O5iii0.932.483.204 (6)135
C10—H10···O3iv0.932.393.184 (6)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H10N3O4S+·C2F3O2
Mr393.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)5.662 (2), 17.497 (7), 16.173 (6)
β (°) 96.595 (7)
V3)1591.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.10 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7696, 2763, 1596
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.150, 1.05
No. of reflections2763
No. of parameters269
No. of restraints43
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.899 (11)1.812 (14)2.706 (5)173 (5)
N2—H2A···O6i0.86 (5)2.00 (5)2.858 (5)176 (5)
C2—H2···O5i0.932.523.343 (6)148
C3—H3···O1ii0.932.563.406 (6)151
C8—H8···O5iii0.932.483.204 (6)135
C10—H10···O3iv0.932.393.184 (6)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

We thank Chun-Gang Chen, Sheng-Yang Niu and Gang Li of Henan Institute of Science and Technology for their help.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350–352.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, B., Zheng, P.-W., Liu, K.-Y. & Cheng, D. (2008). Acta Cryst. E64, o254.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds