organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-eth­­oxy-2-methyl-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bInstitute of Chemistry, University of The Punjab, Lahore 54590, Pakistan, cChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and dDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan
*Correspondence e-mail: noshinakbar@yahoo.com

(Received 8 July 2008; accepted 9 July 2008; online 16 July 2008)

In the crystal structure of the title compound, C13H15NO5S, the mol­ecules exhibit weak S=O⋯H—C and C=O⋯H—C inter­molecular inter­actions and arrange themselves into centrosymmetric dimers by means of ππ inter­actions (ring centroids are separated by 3.619 Å, while the closest C⋯C contacts are 3.514 Å). 1,2-Benzothia­zines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis.

Related literature

For related literature on benzothia­zines, see: Ahmad et al. (2008[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.]); Bihovsky et al. (2004[Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035-1038.]); Fabiola et al. (1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]); Golič et al. (1987[Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280-282.]); Kojić-Prodić & Rużić-Toroš (1982[Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171-1175.]); Reck et al. (1988[Reck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. & Hohne, E. (1988). Pharmazie, 43, 477-481.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1171-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO5S

  • Mr = 297.32

  • Triclinic, [P \overline 1]

  • a = 7.9810 (4) Å

  • b = 8.1215 (4) Å

  • c = 10.8173 (6) Å

  • α = 89.4783 (7)°

  • β = 79.5124 (8)°

  • γ = 79.3434 (7)°

  • V = 677.33 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 (2) K

  • 0.57 × 0.17 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.975

  • 8153 measured reflections

  • 4069 independent reflections

  • 3678 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.07

  • 4069 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.51 3.2726 (13) 137
C13—H13A⋯O5i 0.98 2.58 3.3715 (15) 138
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

1,2-Benzothiazine 1,1-dioxides are heterocyclic compounds with numerous types of biological activity reported. For example, some are found useful as medicaments in the treatment of inflammation and rheumatoid arthritis (Lombardino et al., 1971). Other 1,2-benzothiazine 1,1-dioxides exhibit hyperlipidemic, anti-bacterial and Calpain I inhibition activities while they have also been found useful as endothelin receptor antagonists (Bihovsky et al., 2004). In continuation to our ongoing work on the synthesis of benzothiazine 1,1-dioxides (Zia-ur-Rehman et al., 2005, 2006, 2007; Ahmad et al., 2008), we herein report the synthesis and crystal structure of the title compound, (I).

In (I), the thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 relatively planar (within +/- 0.0336 (6) Å) and N1 showing significant deviation from this plane due to its pyramidal geometry with the methyl group pointing approximately perpendicular to the plane. Compared with related molecules having no substitution at O3 [1.352 (9) Å; Golič et al., 1987; 1.339 (15) Å; Kojić-Prodić & Rużić-Toroš, 1982; 1.350 (9) Å; Reck et al., 1988; 1.336 (2) Å; Fabiola et al., 1998], C9—O4 in (I) is found to be shorter due to the absence of hydrogen bonding at O4. Each molecule of (I) is linked to its neighbours through inter-molecular C-H···S and C-H···O interactions giving rise to chains of molecules parallel to b (Fig. 2). Additionally, the molecules in are linked into centro-symmetric dimers by means of π-π interactions. The ring centroids are separated by 3.619 Å, while the closest C···C contacts are between C2 and C4'', separated by 3.514 Å (symmetry operator -x, -y, 1 - z).

Related literature top

For related literature on benzothiazines, see: Ahmad et al. (2008); Bihovsky et al. (2004); Fabiola et al. (1998); Golič et al. (1987); Kojić-Prodić & Rużić-Toroš (1982); Lombardino et al. (1971); Reck et al. (1988); Zia-ur-Rehman et al. (2005, 2006, 2007).

Experimental top

A mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (1.33 g; 5.0 mmoles), ethyl iodide (3.90 g; 25.0 mmoles), anhydrous potassium carbonate (10.0 g) and acetonitrile (100 ml) was stirred and refluxed for a period of 7 h. After removal of acetonitrile and excess methyl iodide under vacuum, chloroform (30 ml) was added and the resultant mixture was filtered. The filtrate was washed with water to remove potassium carbonate, dried with anhydrous sodium sulfate and filtered. Slow evaporation of the solvent afforded the crystalline product. Yield:1.26 g; 77.8%; m.p.147°C.

Refinement top

H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl-H and mthylene-H; 0.98 Å for methyl-H) using a riding model with rotational freedom in the case of the methyl group. U values were set to 1.2Ueq of the carrier atom (1.5U for methyl-H).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing plot showing the two unique weak H-bonds (thin dashed lines) and π-π interactions (thick dashed lines).
Methyl 4-ethoxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C13H15NO5SZ = 2
Mr = 297.32F(000) = 312
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9810 (4) ÅCell parameters from 4878 reflections
b = 8.1215 (4) Åθ = 2.6–30.5°
c = 10.8173 (6) ŵ = 0.26 mm1
α = 89.4783 (7)°T = 150 K
β = 79.5124 (8)°Block, colourless
γ = 79.3434 (7)°0.57 × 0.17 × 0.10 mm
V = 677.33 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4069 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.867, Tmax = 0.975k = 1111
8153 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1549P]
where P = (Fo2 + 2Fc2)/3
4069 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H15NO5Sγ = 79.3434 (7)°
Mr = 297.32V = 677.33 (6) Å3
Triclinic, P1Z = 2
a = 7.9810 (4) ÅMo Kα radiation
b = 8.1215 (4) ŵ = 0.26 mm1
c = 10.8173 (6) ÅT = 150 K
α = 89.4783 (7)°0.57 × 0.17 × 0.10 mm
β = 79.5124 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
4069 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3678 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.975Rint = 0.014
8153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
4069 reflectionsΔρmin = 0.34 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37350 (11)0.28852 (10)0.19858 (8)0.01854 (16)
C110.32384 (14)0.38127 (14)0.08880 (10)0.0245 (2)
H11A0.41410.34750.01450.037*
H11B0.31070.50190.10520.037*
H11C0.21370.35600.07380.037*
S10.24645 (3)0.32872 (3)0.33583 (2)0.02022 (8)
O10.34949 (12)0.28319 (11)0.43054 (8)0.02893 (18)
O20.15077 (12)0.49632 (10)0.33569 (9)0.0320 (2)
C10.10979 (13)0.18357 (12)0.33574 (9)0.01836 (18)
C20.06595 (13)0.22200 (14)0.38733 (10)0.0230 (2)
H20.11770.33110.42070.028*
C30.16426 (14)0.09717 (16)0.38904 (10)0.0268 (2)
H30.28510.12130.42230.032*
C40.08623 (15)0.06293 (15)0.34218 (10)0.0259 (2)
H40.15380.14830.34630.031*
C50.08906 (14)0.09988 (13)0.28949 (10)0.02141 (19)
H50.14060.20990.25800.026*
C60.18987 (12)0.02506 (12)0.28280 (9)0.01735 (17)
C70.37251 (12)0.00786 (12)0.21908 (9)0.01697 (17)
O30.45163 (10)0.17111 (9)0.19875 (7)0.02058 (15)
C120.49827 (15)0.25298 (13)0.31109 (10)0.0239 (2)
H12A0.39540.28670.36330.029*
H12B0.54230.17530.36170.029*
C130.63614 (18)0.40461 (15)0.27026 (14)0.0356 (3)
H13A0.59110.48100.22070.053*
H13B0.66980.46190.34460.053*
H13C0.73750.36990.21890.053*
C80.45807 (12)0.11773 (12)0.17707 (9)0.01727 (17)
C90.64295 (13)0.08859 (13)0.11182 (9)0.01947 (18)
O40.72988 (11)0.04393 (11)0.07302 (9)0.0333 (2)
O50.70186 (10)0.23360 (10)0.10291 (8)0.02397 (16)
C100.88320 (14)0.21929 (15)0.04958 (11)0.0264 (2)
H10A0.95260.14250.09940.040*
H10B0.91560.32990.05030.040*
H10C0.90470.17580.03720.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0194 (4)0.0142 (3)0.0198 (4)0.0011 (3)0.0003 (3)0.0009 (3)
C110.0246 (5)0.0219 (5)0.0254 (5)0.0017 (4)0.0033 (4)0.0062 (4)
S10.02258 (13)0.01530 (12)0.02126 (13)0.00367 (9)0.00029 (9)0.00292 (8)
O10.0339 (4)0.0336 (4)0.0221 (4)0.0119 (3)0.0065 (3)0.0039 (3)
O20.0330 (4)0.0152 (4)0.0405 (5)0.0009 (3)0.0084 (4)0.0039 (3)
C10.0194 (4)0.0180 (4)0.0173 (4)0.0033 (3)0.0025 (3)0.0017 (3)
C20.0203 (4)0.0257 (5)0.0204 (4)0.0009 (4)0.0006 (4)0.0008 (4)
C30.0194 (4)0.0379 (6)0.0230 (5)0.0080 (4)0.0015 (4)0.0020 (4)
C40.0243 (5)0.0325 (5)0.0246 (5)0.0137 (4)0.0058 (4)0.0048 (4)
C50.0241 (5)0.0204 (4)0.0219 (4)0.0074 (4)0.0067 (4)0.0027 (4)
C60.0184 (4)0.0171 (4)0.0169 (4)0.0035 (3)0.0039 (3)0.0019 (3)
C70.0189 (4)0.0143 (4)0.0175 (4)0.0017 (3)0.0041 (3)0.0008 (3)
O30.0266 (4)0.0134 (3)0.0204 (3)0.0003 (3)0.0040 (3)0.0010 (2)
C120.0284 (5)0.0179 (4)0.0251 (5)0.0011 (4)0.0094 (4)0.0004 (4)
C130.0396 (7)0.0210 (5)0.0446 (7)0.0095 (5)0.0183 (6)0.0072 (5)
C80.0171 (4)0.0153 (4)0.0185 (4)0.0014 (3)0.0023 (3)0.0010 (3)
C90.0186 (4)0.0202 (4)0.0190 (4)0.0033 (3)0.0022 (3)0.0012 (3)
O40.0237 (4)0.0231 (4)0.0472 (5)0.0014 (3)0.0062 (4)0.0086 (4)
O50.0175 (3)0.0207 (3)0.0323 (4)0.0045 (3)0.0003 (3)0.0009 (3)
C100.0176 (4)0.0304 (5)0.0299 (5)0.0059 (4)0.0002 (4)0.0026 (4)
Geometric parameters (Å, º) top
N1—C81.4270 (12)C5—H50.9500
N1—C111.4762 (13)C6—C71.4713 (13)
N1—S11.6363 (9)C7—C81.3599 (13)
C11—H11A0.9800C7—O31.3602 (11)
C11—H11B0.9800O3—C121.4546 (12)
C11—H11C0.9800C12—C131.5014 (15)
S1—O11.4318 (9)C12—H12A0.9900
S1—O21.4324 (8)C12—H12B0.9900
S1—C11.7479 (10)C13—H13A0.9800
C1—C21.3901 (14)C13—H13B0.9800
C1—C61.4035 (13)C13—H13C0.9800
C2—C31.3900 (16)C8—C91.4920 (13)
C2—H20.9500C9—O41.2008 (13)
C3—C41.3904 (17)C9—O51.3429 (12)
C3—H30.9500O5—C101.4409 (12)
C4—C51.3891 (15)C10—H10A0.9800
C4—H40.9500C10—H10B0.9800
C5—C61.4006 (14)C10—H10C0.9800
C8—N1—C11116.99 (8)C5—C6—C7120.92 (9)
C8—N1—S1114.71 (6)C1—C6—C7121.18 (9)
C11—N1—S1118.75 (7)C8—C7—O3120.74 (9)
N1—C11—H11A109.5C8—C7—C6122.18 (9)
N1—C11—H11B109.5O3—C7—C6117.02 (8)
H11A—C11—H11B109.5C7—O3—C12113.59 (7)
N1—C11—H11C109.5O3—C12—C13107.98 (9)
H11A—C11—H11C109.5O3—C12—H12A110.1
H11B—C11—H11C109.5C13—C12—H12A110.1
O1—S1—O2119.30 (6)O3—C12—H12B110.1
O1—S1—N1107.81 (5)C13—C12—H12B110.1
O2—S1—N1108.08 (5)H12A—C12—H12B108.4
O1—S1—C1108.19 (5)C12—C13—H13A109.5
O2—S1—C1110.56 (5)C12—C13—H13B109.5
N1—S1—C1101.38 (5)H13A—C13—H13B109.5
C2—C1—C6122.35 (9)C12—C13—H13C109.5
C2—C1—S1122.00 (8)H13A—C13—H13C109.5
C6—C1—S1115.63 (7)H13B—C13—H13C109.5
C3—C2—C1118.52 (10)C7—C8—N1120.24 (9)
C3—C2—H2120.7C7—C8—C9123.51 (9)
C1—C2—H2120.7N1—C8—C9116.22 (8)
C2—C3—C4120.16 (10)O4—C9—O5123.71 (9)
C2—C3—H3119.9O4—C9—C8126.14 (9)
C4—C3—H3119.9O5—C9—C8110.15 (8)
C5—C4—C3120.97 (10)C9—O5—C10115.19 (8)
C5—C4—H4119.5O5—C10—H10A109.5
C3—C4—H4119.5O5—C10—H10B109.5
C4—C5—C6120.01 (10)H10A—C10—H10B109.5
C4—C5—H5120.0O5—C10—H10C109.5
C6—C5—H5120.0H10A—C10—H10C109.5
C5—C6—C1117.87 (9)H10B—C10—H10C109.5
C8—N1—S1—O158.91 (8)S1—C1—C6—C76.73 (12)
C11—N1—S1—O1155.79 (8)C5—C6—C7—C8159.51 (10)
C8—N1—S1—O2170.89 (7)C1—C6—C7—C818.73 (14)
C11—N1—S1—O225.58 (9)C5—C6—C7—O317.78 (13)
C8—N1—S1—C154.62 (8)C1—C6—C7—O3163.98 (9)
C11—N1—S1—C190.69 (8)C8—C7—O3—C12106.82 (11)
O1—S1—C1—C2104.51 (9)C6—C7—O3—C1275.85 (11)
O2—S1—C1—C227.82 (10)C7—O3—C12—C13159.92 (9)
N1—S1—C1—C2142.26 (9)O3—C7—C8—N1179.78 (8)
O1—S1—C1—C674.15 (9)C6—C7—C8—N12.59 (14)
O2—S1—C1—C6153.53 (8)O3—C7—C8—C92.63 (15)
N1—S1—C1—C639.09 (8)C6—C7—C8—C9179.82 (9)
C6—C1—C2—C31.63 (15)C11—N1—C8—C7107.70 (11)
S1—C1—C2—C3176.93 (8)S1—N1—C8—C738.24 (12)
C1—C2—C3—C41.25 (16)C11—N1—C8—C974.55 (11)
C2—C3—C4—C52.02 (17)S1—N1—C8—C9139.52 (8)
C3—C4—C5—C60.10 (16)C7—C8—C9—O411.14 (17)
C4—C5—C6—C12.85 (15)N1—C8—C9—O4171.18 (10)
C4—C5—C6—C7175.45 (9)C7—C8—C9—O5168.23 (9)
C2—C1—C6—C53.67 (15)N1—C8—C9—O59.45 (12)
S1—C1—C6—C5174.98 (7)O4—C9—O5—C103.71 (15)
C2—C1—C6—C7174.62 (9)C8—C9—O5—C10175.68 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.513.2726 (13)137
C13—H13A···O5i0.982.583.3715 (15)138
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H15NO5S
Mr297.32
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.9810 (4), 8.1215 (4), 10.8173 (6)
α, β, γ (°)89.4783 (7), 79.5124 (8), 79.3434 (7)
V3)677.33 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.57 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.867, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8153, 4069, 3678
Rint0.014
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.07
No. of reflections4069
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.34

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.513.2726 (13)137
C13—H13A···O5i0.982.583.3715 (15)138
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We are grateful to PCSIR Laboratories Complex, Lahore, for the provision of necessary chemicals.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett. 14, 1035–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGolič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationReck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. & Hohne, E. (1988). Pharmazie, 43, 477–481.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1171–1175.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds